The normal derivative lemma and surrounding issues

被引:13
作者
Apushkinskaya, D. E. [1 ,2 ]
Nazarov, A. I. [2 ,3 ]
机构
[1] RUDN Univ, Moscow, Russia
[2] St Petersburg State Univ, St Petersburg, Russia
[3] Russian Acad Sci, St Petersburg Dept, Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
strong maximum principle; normal derivative lemma; Hopf- Oleinik lemma; Harnack inequality; Aleksandrov-Bakelman maximum principle; BOUNDARY HARNACK PRINCIPLE; STRONG MAXIMUM PRINCIPLE; ELLIPTIC-EQUATIONS; DIRICHLET-PROBLEM; PARABOLIC EQUATIONS; HOPF-LEMMA; SCHRODINGER-OPERATORS; HARMONIC-FUNCTIONS; GEOMETRIC PROBLEM; POTENTIAL-THEORY;
D O I
10.1070/RM10049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey we describe the history and current state of one of the key areas in the qualitative theory of elliptic partial differential equations related to the strong maximum principle and the boundary point principle (normal derivative lemma). Bibliography: 234 titles.
引用
收藏
页码:189 / 249
页数:61
相关论文
共 294 条
[1]  
Abatangelo N., HOPF LEMMA REGIONAL
[2]   ON THE LOSS OF MAXIMUM PRINCIPLES FOR HIGHER-ORDER FRACTIONAL LAPLACIANS [J].
Abatangelo, Nicola ;
Jarohs, Sven ;
Saldana, Alberto .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) :4823-4835
[3]  
Adamowicz T, 2016, ANN MAT PUR APPL, V195, P623, DOI 10.1007/s10231-015-0481-3
[4]  
Aeppli A., 1960, P AM MATH SOC, V11, P826, DOI [10.1090/S0002-9939-1960-0121567-1, DOI 10.1090/S0002-9939-1960-0121567-1]
[5]   Boundary Harnack principle and Martin boundary for a uniform domain [J].
Aikawa, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2001, 53 (01) :119-145
[6]  
Aikawa H, 2008, MATH SCAND, V103, P61
[7]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[8]  
Aleksandrov A.D., 1959, Izv. Vyssh. Uchebn. Zaved. Mat., P3
[9]  
Aleksandrov A.D., 1960, VESTNIK LENINGRAD U, V15, P5
[10]  
Aleksandrov A.D., 1961, Izv. Vyssh. Uchebn. Zaved. Mat., P3