CHARACTERIZING JORDAN MAPS ON C*-ALGEBRAS THROUGH ZERO PRODUCTS
被引:49
|
作者:
Alaminos, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, SpainUniv Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
Alaminos, J.
[1
]
Bresar, J. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor 2000, SloveniaUniv Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
Bresar, J. M.
[2
,3
]
Extremera, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, SpainUniv Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
Extremera, J.
[1
]
Villena, A. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, SpainUniv Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
C*-algebra;
homomorphism;
Jordan homomorphism;
derivation;
Jordan derivation;
zero-product-preserving map;
DERIVATIONS;
MAPPINGS;
LIE;
D O I:
10.1017/S0013091509000534
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let A and B be C*-algebras, let X be an essential Banach A-bimodule and let T : A -> B and S : A -> X be continuous linear maps with T surjective. Suppose that T(a) T(b)+ T(b) T(a) = 0 and S(a) b + bS(a) + aS(b) + S(b) a = 0 whenever a, b is an element of A are such that ab = ba = 0. We prove that then T = w Phi and S = D+Psi, where w lies in the centre of the multiplier algebra of B, Phi: A -> B is a Jordan epimorphism, D: A -> X is a derivation and Psi : A -> X is a bimodule homomorphism.