CHARACTERIZING JORDAN MAPS ON C*-ALGEBRAS THROUGH ZERO PRODUCTS

被引:49
|
作者
Alaminos, J. [1 ]
Bresar, J. M. [2 ,3 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor 2000, Slovenia
关键词
C*-algebra; homomorphism; Jordan homomorphism; derivation; Jordan derivation; zero-product-preserving map; DERIVATIONS; MAPPINGS; LIE;
D O I
10.1017/S0013091509000534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be C*-algebras, let X be an essential Banach A-bimodule and let T : A -> B and S : A -> X be continuous linear maps with T surjective. Suppose that T(a) T(b)+ T(b) T(a) = 0 and S(a) b + bS(a) + aS(b) + S(b) a = 0 whenever a, b is an element of A are such that ab = ba = 0. We prove that then T = w Phi and S = D+Psi, where w lies in the centre of the multiplier algebra of B, Phi: A -> B is a Jordan epimorphism, D: A -> X is a derivation and Psi : A -> X is a bimodule homomorphism.
引用
收藏
页码:543 / 555
页数:13
相关论文
共 50 条
  • [1] Characterizing Jordan Maps on Triangular Rings Through Commutative Zero Products
    Ghahramani, Hoger
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [2] Characterizations of Jordan mappings on some rings and algebras through zero products
    Huang, Wenbo
    Li, Jiankui
    He, Jun
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02) : 334 - 346
  • [3] Characterizing linear mappings through zero products or zero Jordan products
    Guangyu An
    Jun He
    Jiankui Li
    Periodica Mathematica Hungarica, 2022, 84 : 270 - 286
  • [4] Characterizing linear mappings through zero products or zero Jordan products
    An, Guangyu
    He, Jun
    Li, Jiankui
    PERIODICA MATHEMATICA HUNGARICA, 2022, 84 (02) : 270 - 286
  • [5] LINEAR MAPS ON BLOCK UPPER TRIANGULAR MATRIX ALGEBRAS BEHAVING LIKE JORDAN DERIVATIONS THROUGH COMMUTATIVE ZERO PRODUCTS
    Ghahramani, H.
    Ghosseiri, M. N.
    Heidarizadeh, L.
    OPERATORS AND MATRICES, 2020, 14 (01): : 189 - 205
  • [6] CHARACTERIZING JORDAN DERIVATIONS OF MATRIX RINGS THROUGH ZERO PRODUCTS
    Ghahramani, Hoger
    MATHEMATICA SLOVACA, 2015, 65 (06) : 1277 - 1290
  • [7] ADDITIVITY OF MAPS PRESERVING JORDAN η*-PRODUCTS ON C*-ALGEBRAS
    Taghavi, A.
    Rohi, H.
    Darvish, V.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (07) : 107 - 116
  • [8] Maps preserving zero products
    Alaminos, J.
    Bresar, M.
    Extremera, J.
    Villena, A. R.
    STUDIA MATHEMATICA, 2009, 193 (02) : 131 - 159
  • [9] On maps preserving zero Jordan products
    Chebotar, Mikhail A.
    Ke, Wen-Fong
    Lee, Pjek-Hwee
    Zhang, Ruibin
    MONATSHEFTE FUR MATHEMATIK, 2006, 149 (02): : 91 - 101
  • [10] Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products
    Chen, Yunhe
    Li, Jiankui
    STUDIA MATHEMATICA, 2011, 206 (02) : 121 - 134