Compacted N-Doped 3D Bicontinuous Nanoporous Graphene/Carbon Nanotubes@Ni-Doped MnO2 Electrode for Ultrahigh Volumetric Performance All-Solid-State Supercapacitors at Wide Temperature Range

被引:18
作者
Qin, Kaiqiang [1 ,2 ,3 ]
Baucom, Jesse [3 ]
Diao, Lechen [1 ,2 ]
Lu, Yunfeng [3 ]
Zhao, Naiqin [1 ,2 ,4 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Composites & Funct Mat, Tianjin 300350, Peoples R China
[3] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[4] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300072, Peoples R China
关键词
3D graphene; all-solid-state supercapacitors; carbon nanotubes; high volumetric performance; Ni-doped MnO; (2); CARBON NANOMATERIALS; LONG-LIFE; PAPER;
D O I
10.1002/smll.202203166
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing wide temperature range flexible solid-state supercapacitors with high volumetric energy density is highly desirable to meet the demands of the rapidly developing field of miniature consumer electronic devices and promote their widespread adoption. Herein, high-quality dense N-doped 3D porous graphene/carbon nanotube (N-3DG/CNTs) hybrid films are prepared and used as the substrate for the growth of Ni-doped MnO2 (Ni-MnO2). The integrated and interconnected architecture endows N-3DG/CNTs@Ni-MnO2 composite electrodes' high conductivity and fast ion/electron transport pathway. Subsequently, 2.4 V solid-state supercapacitors are fabricated based on compacted N-3DG/CNTs@Ni-MnO2 positive electrodes, which exhibit an ultrahigh volumetric energy density of 78.88 mWh cm(-3) based on the entire device including electrodes, solid-state electrolyte, and packing films, excellent cycling stability up to 10 000 cycles, and a wide operating temperature range from -20 to 70 degrees C. This work demonstrates a design of flexible solid-state supercapacitors with exceptional volumetric performance capable of operation under extreme conditions.
引用
收藏
页数:9
相关论文
共 65 条
  • [1] Advances on Emerging Materials for Flexible Supercapacitors: Current Trends and Beyond
    Benzigar, Mercy R.
    Dasireddy, Venkata D. B. C.
    Guan, Xinwei
    Wu, Tom
    Liu, Guozhen
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (40)
  • [2] Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh-Volumetric-Performance Supercapacitors
    Bu, Yongfeng
    Sun, Tao
    Cai, Yuejin
    Du, Lingyu
    Zhuo, Ou
    Yang, Lijun
    Wu, Qiang
    Wang, Xizhang
    Hu, Zheng
    [J]. ADVANCED MATERIALS, 2017, 29 (24)
  • [3] Three-dimensional graphene materials: preparation, structures and application in supercapacitors
    Cao, Xiehong
    Yin, Zongyou
    Zhang, Hua
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) : 1850 - 1865
  • [4] Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density
    Chao, Dongliang
    Ye, Chao
    Xie, Fangxi
    Zhou, Wanhai
    Zhang, Qinghua
    Gu, Qinfen
    Davey, Kenneth
    Gu, Lin
    Qiao, Shi-Zhang
    [J]. ADVANCED MATERIALS, 2020, 32 (25)
  • [5] Flexible Graphene-Based Supercapacitors: A Review
    Chee, W. K.
    Lim, H. N.
    Zainal, Z.
    Huang, N. M.
    Harrison, I.
    Andou, Y.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08) : 4153 - 4172
  • [6] Carbon nanomaterials for high-performance supercapacitors
    Chen, Tao
    Dai, Liming
    [J]. MATERIALS TODAY, 2013, 16 (7-8) : 272 - 280
  • [7] High Volumetric Capacitance, Ultralong Life Supercapacitors Enabled by Waxberry-Derived Hierarchical Porous Carbon Materials
    Dong, Xiaomei
    Jin, Huile
    Wang, Rongyue
    Zhang, Jingjing
    Feng, Xin
    Yan, Chengzhan
    Chen, Suqin
    Wang, Shun
    Wang, Jichang
    Lu, Jun
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (11)
  • [8] Graphene for batteries, supercapacitors and beyond
    El-Kady, Maher F.
    Shao, Yuanlong
    Kaner, Richard B.
    [J]. NATURE REVIEWS MATERIALS, 2016, 1 (07):
  • [9] Monodisperse Carbon Sphere-Constructed Pomegranate-Like Structures for High-Volumetric-Capacitance Supercapacitors
    Feng, Shihao
    Liu, Zhenhui
    Yu, Qiang
    Zhuang, Zechao
    Chen, Qiang
    Fu, Shida
    Zhou, Liang
    Mai, Liqiang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 4011 - 4016
  • [10] Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance
    Ghidiu, Michael
    Lukatskaya, Maria R.
    Zhao, Meng-Qiang
    Gogotsi, Yury
    Barsoum, Michel W.
    [J]. NATURE, 2014, 516 (7529) : 78 - U171