Morphology and dynamic scaling analysis of cell colonies with linear growth fronts

被引:49
作者
Huergo, M. A. C. [1 ]
Pasquale, M. A. [1 ]
Bolzan, A. E. [1 ]
Arvia, A. J. [1 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, UNLP, Inst Invest Fisicoquim Teor & Aplicadas INIFTA, RA-1900 La Plata, Argentina
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 03期
关键词
UNIVERSAL DYNAMICS; TUMOR-GROWTH; MODEL; MONOLAYERS; DIFFUSION; MIGRATION; ARTICLE;
D O I
10.1103/PhysRevE.82.031903
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The growth of linear cell colony fronts is investigated from the morphology of cell monolayer colonies, the cell size and shape distribution, the front displacement velocity, and the dynamic scaling analysis of front roughness fluctuations. At the early growth stages, colony patterns consist of rather ordered compact domains of small cells, whereas at advanced stages, an uneven distribution of cells sets in, and some large cells and cells exhibiting large filopodia are produced. Colony front profiles exhibit overhangs and behave as fractals with the dimension D-F=1.25 +/- 0.05. The colony fronts shift at 0.22 +/- 0.02 mu m min(-1) average constant linear velocity and their roughness (w) increases with time (t). Dynamic scaling analysis of experimental and overhang-corrected growth profile data shows that w versus system width l log-log plots collapse to a single curve when l exceeds a certain threshold value l(o), a width corresponding to the average diameter of few cells. Then, the influence of overhangs on the roughness dynamics becomes negligible, and a growth exponent beta=0.33 +/- 0.02 is derived. From the structure factor analysis of overhang-corrected profiles, a global roughness exponent alpha(s)=0.50 +/- 0.05 is obtained. For l>200 mu m, this set of exponents fulfills the Family-Vicsek relationship. It is consistent with the predictions of the continuous Kardar-Parisi-Zhang model.
引用
收藏
页数:11
相关论文
共 45 条
[1]   SPECIFIC INTERACTIONS OF PROTEINS WITH FUNCTIONAL LIPID MONOLAYERS - WAYS OF SIMULATING BIOMEMBRANE PROCESSES [J].
AHLERS, M ;
MULLER, W ;
REICHERT, A ;
RINGSDORF, H ;
VENZMER, J .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1990, 29 (11) :1269-1285
[2]  
[Anonymous], 1998, Fractals, scaling and growth far from equilibrium
[3]  
[Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
[4]   A cellular automaton model for the migration of glioma cells [J].
Aubert, M. ;
Badoual, M. ;
Fereol, S. ;
Christov, C. ;
Grammaticos, B. .
PHYSICAL BIOLOGY, 2006, 3 (02) :93-100
[5]  
Baszkin A., 2000, PHYS CHEM BIOL INTER
[6]   Cell sorting is analogous to phase ordering in fluids [J].
Beysens, DA ;
Forgacs, G ;
Glazier, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9467-9471
[7]   Classifying the expansion kinetics and critical surface dynamics of growing cell populations [J].
Block, M. ;
Schoell, E. ;
Drasdo, D. .
PHYSICAL REVIEW LETTERS, 2007, 99 (24)
[8]   The effect of pressure on the growth of tumour cell colonies [J].
Bru, A. ;
Casero, D. .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (02) :171-180
[9]   Reply to comments by Buceta and Galeano regarding the article "The Universal Dynamics of Tumor Growth'' [J].
Brú, A ;
Albertos, S ;
Subiza, JL ;
Garcia-Asenjo, JL ;
Brú, I .
BIOPHYSICAL JOURNAL, 2005, 88 (05) :3737-3738
[10]   The universal dynamics of tumor growth [J].
Brú, A ;
Albertos, S ;
Subiza, JL ;
García-Asenjo, JL ;
Brú, I .
BIOPHYSICAL JOURNAL, 2003, 85 (05) :2948-2961