THERE ARE NO PROPER TOPOLOGICAL HYPERBOLIC HOMOCLINIC CLASSES FOR AREA-PRESERVING MAPS

被引:1
|
作者
Bessa, Mario [1 ]
Torres, Maria Joana [2 ,3 ]
机构
[1] Univ Beira Interior, Dept Matemat, Rua Marques dAvila & Bolama, P-6201001 Covilha, Portugal
[2] Univ Minho, CMAT, Campus Gualtar, P-4700057 Braga, Portugal
[3] Univ Minho, Dept Matemat & Aplicacoes, Campus Gualtar, P-4700057 Braga, Portugal
关键词
shadowing; expansiveness; topological dynamics; homoclinic classes;
D O I
10.1017/S0013091519000282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We begin by defining a homoclinic class for homeomorphisms. Then we prove that if a topological homoclinic class Lambda associated with an area-preserving homeomorphism f on a surface M is topologically hyperbolic (i.e. has the shadowing and expansiveness properties), then Lambda = M and f is an Anosov homeomorphism.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [1] On dynamics and bifurcations of area-preserving maps with homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey
    NONLINEARITY, 2015, 28 (09) : 3027 - 3071
  • [2] Visualization of Topological Structures in Area-Preserving Maps
    Tricoche, Xavier
    Garth, Christoph
    Sanderson, Allen
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 1765 - 1774
  • [3] On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey V.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (06): : 702 - 717
  • [4] On the two-dimensional area-preserving maps with homoclinic tangency
    Gonchenko, S.V.
    Shil'nikov, L.P.
    Doklady Akademii Nauk, 2001, 378 (06) : 727 - 733
  • [5] On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies
    Amadeu Delshams
    Marina Gonchenko
    Sergey V. Gonchenko
    Regular and Chaotic Dynamics, 2014, 19 : 702 - 717
  • [6] Existence and visualization of a hyperbolic structure in area-preserving maps
    Lazutkin, VF
    CHAOS SOLITONS & FRACTALS, 2000, 11 (1-3) : 237 - 240
  • [7] On area-preserving non-hyperbolic chaotic maps: A case study
    Liu, ZR
    Chen, GR
    CHAOS SOLITONS & FRACTALS, 2003, 16 (05) : 811 - 818
  • [8] RESONANCES IN AREA-PRESERVING MAPS
    MACKAY, RS
    MEISS, JD
    PERCIVAL, IC
    PHYSICA D, 1987, 27 (1-2): : 1 - 20
  • [9] On certain area-preserving maps
    Brown, AB
    Halperin, M
    ANNALS OF MATHEMATICS, 1935, 36 : 833 - 837
  • [10] On differentiable area-preserving maps of the plane
    Roland Rabanal
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 73 - 82