Influence of local carbon fibre orientation on the water transport in the gas diffusion layer of polymer electrolyte membrane fuel cells

被引:29
|
作者
Markoetter, Henning [1 ,2 ]
Dittrnann, Katja [2 ]
Haussmann, Jan [3 ]
Alink, Robert [4 ]
Gerteisen, Dietmar [4 ]
Riesemeier, Heinrich [5 ]
Scholta, Joachim [3 ]
Banhart, John [1 ,2 ]
Manke, Ingo [2 ]
机构
[1] Tech Univ Berlin, D-10623 Berlin, Germany
[2] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany
[3] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, D-89081 Ulm, Germany
[4] Fraunhofer Inst Solare Eneigiesyst ISE, D-79110 Freiburg, Germany
[5] Bundesanstalt Mat Forsch & Prufung BAM, D-12205 Berlin, Germany
关键词
Polymer electrolyte membrane fuel cell; Gas diffusion layer; Perforation; Liquid water transport; Local fibre structure; Radiography combined with tomography; VISUALIZATION; TOMOGRAPHY; SATURATION; BEHAVIOR;
D O I
10.1016/j.elecom.2014.12.013
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We used synchrotron X-ray imaging to investigate the influence of local fibre structures of gas diffusion layers (GDLs) in polymer electrolyte membrane fuel cells on the transport of water. Two different measurement techniques, namely in-situ radiography and ex-situ tomography, were combined to reveal the structure-properties relationships between the three-dimensional fibre arrangement and the water flow. We found that the orientation of the local carbon fibres strongly affects the direction of liquid water transport. The carbon fibres act as guiding rails for the water droplets. These findings provide completely new ideas on how gas diffusion media in various types of fuel cells could be designed, in order to optimise transport pathways for liquid water and therefore increase cell performance. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 136
页数:4
相关论文
共 50 条
  • [21] Impact of cracked gas diffusion layer on performance of polymer electrolyte membrane fuel cells
    Kim, Geon Hwi
    Kim, Dasol
    Kim, Jaeyeon
    Kim, Hyeok
    Park, Taehyun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 : 311 - 316
  • [22] Double-layer gas diffusion media for improved water management in polymer electrolyte membrane fuel cells
    Wang, Yongqiang
    Wang, Liang
    Advani, Suresh G.
    Prasad, Ajay K.
    JOURNAL OF POWER SOURCES, 2015, 292 : 39 - 48
  • [23] Polytetrafluorethylene effects on liquid water flowing through the gas diffusion layer of polymer electrolyte membrane fuel cells
    Yu, Junliang
    Froning, Dieter
    Reimer, Uwe
    Lehnert, Werner
    JOURNAL OF POWER SOURCES, 2019, 438
  • [24] Experimental investigation of liquid water droplet removal in a simulated polymer electrolyte membrane fuel cell gas channel with gas diffusion layer characteristics
    Yoon, Yeogun
    Jo, Yongchan
    Kim, Han-Sang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (12) : 5221 - 5230
  • [25] Effect of Clamping Compression on the Mechanical Performance of a Carbon Paper Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells
    Chen, Yanqin
    Zhao, Jinghui
    Jin, Cuihong
    Ke, Yuchao
    Li, Decai
    Wang, Zixi
    MEMBRANES, 2022, 12 (07)
  • [26] Pore-network analysis of two-phase water transport in gas diffusion layers of polymer electrolyte membrane fuel cells
    Lee, Kyu-Jin
    Nam, Jin Hyun
    Kim, Charn-Jung
    ELECTROCHIMICA ACTA, 2009, 54 (04) : 1166 - 1176
  • [27] Experimental study of the effect of dissolution on the gas diffusion layer in polymer electrolyte membrane fuel cells
    Ha, Taehun
    Cho, Junhyun
    Park, Jaeman
    Min, Kyoungdoug
    Kim, Han-Sang
    Lee, Eunsook
    Jyoung, Jy-Young
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (19) : 12427 - 12435
  • [28] Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method
    Jeon, Dong Hyup
    Kim, Hansang
    JOURNAL OF POWER SOURCES, 2015, 294 : 393 - 405
  • [29] Water transport in polymer electrolyte membrane fuel cells
    Jiao, Kui
    Li, Xianguo
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (03) : 221 - 291
  • [30] Effect of porosity gradient in cathode gas diffusion layer of polymer electrolyte membrane fuel cells on the liquid water transport using lattice Boltzmann method
    Habiballahi, Mohammad
    Hassanzadeh, Hasan
    Rahnama, Mohammad
    Mirbozorgi, Seyed Ali
    Javaran, Ebrahim Jahanshahi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2021, 235 (03) : 546 - 562