Optimal Penalty Parameters for Symmetric Discontinuous Galerkin Discretisations of the Time-Harmonic Maxwell Equations

被引:39
作者
Sarmany, D. [1 ,3 ]
Izsak, F. [2 ,3 ]
van der Vegt, J. J. W. [3 ]
机构
[1] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[2] Eotvos Lorand Univ, Dept Appl Anal & Computat Math, H-1117 Budapest, Hungary
[3] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
关键词
Optimal parameter estimates; Symmetric discontinuous Galerkin methods; Maxwell equations; H(curl)-conforming vector elements; MIXED FINITE-ELEMENTS; EIGENVALUE PROBLEM; APPROXIMATION; EIGENPROBLEM; OPERATOR; MESHES;
D O I
10.1007/s10915-010-9366-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide optimal parameter estimates and a priori error bounds for symmetric discontinuous Galerkin (DG) discretisations of the second-order indefinite time-harmonic Maxwell equations. More specifically, we consider two variations of symmetric DG methods: the interior penalty DG (IP-DG) method and one that makes use of the local lifting operator in the flux formulation. As a novelty, our parameter estimates and error bounds are (i) valid in the pre-asymptotic regime; (ii) solely depend on the geometry and the polynomial order; and (iii) are free of unspecified constants. Such estimates are particularly important in three-dimensional (3D) simulations because in practice many 3D computations occur in the pre-asymptotic regime. Therefore, it is vital that our numerical experiments that accompany the theoretical results are also in 3D. They are carried out on tetrahedral meshes with high-order (p=1, 2, 3, 4) hierarchic H(curl)-conforming polynomial basis functions.
引用
收藏
页码:219 / 254
页数:36
相关论文
共 31 条
[1]   Hierarchic finite element bases on unstructured tetrahedral meshes [J].
Ainsworth, M ;
Coyle, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (14) :2103-2130
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]  
Balay S., 2001, PETSc Web page
[4]  
Bassi F., 1997, 2 EUROPEAN C TURBOMA, P99
[5]   SOLVING MAXWELL EQUATIONS IN A CLOSED CAVITY, AND THE QUESTION OF SPURIOUS MODES [J].
BOSSAVIT, A .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) :702-705
[6]  
Bossavit A, 2001, LECT NOTES COMP SCI, V18, P97
[7]   A RATIONALE FOR EDGE-ELEMENTS IN 3-D FIELDS COMPUTATIONS [J].
BOSSAVIT, A .
IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (01) :74-79
[8]  
BREZZI F, 1999, ATT CONV ON F BRIOSC, P197
[9]   Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes [J].
Buffa, Annalisa ;
Houston, Paul ;
Perugia, Ilaria .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 204 (02) :317-333
[10]   Discontinuous Galerkin approximation of the Maxwell eigenproblem [J].
Buffa, Annalisa ;
Perugia, Ilaria .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2198-2226