Contour dynamics of incompressible 3-d fluids in a porous medium with different densities

被引:96
作者
Cordoba, Diego [1 ]
Gancedo, Francisco [1 ]
机构
[1] Consejo Super Invest Cientif, Inst Matemat & Fis Fundamental, Madrid 28006, Spain
关键词
D O I
10.1007/s00220-007-0246-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of the evolution of the interface given by two incompressible fluids through a porous medium, which is known as the Muskat problem and in two dimensions it is mathematically analogous to the two- phase Hele - Shaw cell. We focus on a fluid interface given by a jump of densities, being the equation of the evolution obtained using Darcy's law. We prove local well- posedness when the smaller density is above ( stable case) and in the unstable case we show ill- posedness.
引用
收藏
页码:445 / 471
页数:27
相关论文
共 24 条
[1]   The zero surface tension limit of two-dimensional water waves [J].
Ambrose, DM ;
Masmoudi, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1287-1315
[2]   Well-posedness of two-phase Hele-Shaw flow without surface tension [J].
Ambrose, DM .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :597-607
[3]  
Bear J., 1988, DYNAMICS FLUIDS PORO
[4]   GLOBAL REGULARITY FOR VORTEX PATCHES [J].
BERTOZZI, AL ;
CONSTANTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :19-28
[5]  
BERTOZZI AL, 2002, VORTICITY MATH THEOR
[6]  
BIRKHOFF G, 1962, HYDRODYNAMICS INSTAB, V12, P55
[7]   SINGULAR SOLUTIONS AND ILL-POSEDNESS FOR THE EVOLUTION OF VORTEX SHEETS [J].
CAFLISCH, RE ;
ORELLANA, OF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :293-307
[8]  
CHEMIN JY, 1993, ANN SCI ECOLE NORM S, V26, P517
[9]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[10]   DROPLET BREAKUP IN A MODEL OF THE HELE-SHAW CELL [J].
CONSTANTIN, P ;
DUPONT, TF ;
GOLDSTEIN, RE ;
KADANOFF, LP ;
SHELLEY, MJ ;
ZHOU, SM .
PHYSICAL REVIEW E, 1993, 47 (06) :4169-4181