Shape-preserving knot removal

被引:11
作者
Schumaker, LL
Stanley, SS
机构
[1] Department of Mathematics, Vanderbilt University, Nashville
基金
美国国家科学基金会;
关键词
shape-preserving spline; knot removal; monotone surfaces;
D O I
10.1016/0167-8396(95)00029-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Starting with a shape-preserving C-1 quadratic spline, we show how knots can be removed to produce a new spline which is within a specified tolerance of the original one, and which has the same shape properties. We give specific algorithms and some numerical examples, and also show how the method can be used to compute approximate best free-knot splines. Finally, we discuss how to handle noisy data, and develop an analogous knot removal algorithm for a monotonicity preserving surface method.
引用
收藏
页码:851 / 872
页数:22
相关论文
共 19 条
[1]  
ARGE E, 1990, ALGORITHMS APPROXIMA, V2, P4
[2]  
BUTLAND J, 1980, P COMPUTER GRAPHICS, P409
[3]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[4]  
DeVore R. A., 1986, Computer-Aided Geometric Design, V3, P205, DOI 10.1016/0167-8396(86)90038-5
[5]  
GIRARD DA, 1989, NUMER MATH, V56, P1, DOI 10.1007/BF01395775
[6]  
GOLDMAN R, 1993, KNOT INSERTION DELAT
[7]  
HAN L, 1995, IN PRESS SIAM J NUME
[8]  
Lyche T., 1987, Computer-Aided Geometric Design, V4, P217, DOI 10.1016/0167-8396(87)90013-6
[9]   A DATA-REDUCTION STRATEGY FOR SPLINES WITH APPLICATIONS TO THE APPROXIMATION OF FUNCTIONS AND DATA [J].
LYCHE, T ;
MORKEN, K .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (02) :185-208
[10]  
LYCHE T, 1992, APPROXIMATION THEORY, V7, P1