SILAR deposited porous polyaniline-titanium oxide composite thin film for supercapacitor application

被引:21
作者
Deshmukh, P. R. [1 ,3 ]
Patil, S. V. [1 ]
Bulakhe, R. N. [1 ,3 ]
Sartale, S. D. [2 ]
Lokhande, C. D. [1 ]
机构
[1] Shivaji Univ, Dept Phys, Thin Film Phys Lab, Kolhapur 416004, MS, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, MS, India
[3] Yeungnam Univ, Sch Chem Engn, Gyongsan 712749, Gyeongbuk, South Korea
关键词
Chemical method; Composite; Thin film; Supercapacitor; IONIC LAYER ADSORPTION; ELECTROCHEMICAL CAPACITANCE; ELECTRODE MATERIAL; TIO2; NANOTUBES; POLYMERIZATION; NANOCOMPOSITE; ANILINE; CARBON; FABRICATION; BEHAVIOR;
D O I
10.1016/j.mtcomm.2016.07.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present investigation shows the facile preparation of porous polyaniline-titanium oxide composite nanofibers using a successive ionic layer adsorption and reaction (SILAR) method. The result of X-ray diffraction indicates the amorphous nature of polyaniline-titanium oxide (PANI-TiO2) composite nanofibers. Fourier transform infrared (FT-IR) and FT-Raman spectroscopy studies reveal the formation of composite material. The morphology of PANI-TiO2 composite observed using scanning electron microscope (SEM) shows the spherical TiO2 nanoparticles grown on the PANI nanofibers. The electrochemical measurement shows PANI-TiO2 composite electrode yields specific capacitance of 776 Fg(-1) and gives higher capacitance retention (83%) over 5000 cycles. The superior electrochemical properties attributed to the porous structure of PANI-TiO2 composite nanfibers as well as the synergistic effect between conducting PANI nanofiber and TiO2 nanoparticles. This specifies that this method may provide a promising strategy for preparation of PANI-based transition metal oxide composite thin film electrodes for better performance of supercapcitor. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 53 条
[1]   Electrodeposition of vanadium oxide-polyaniline composite nanowire electrodes for high energy density supercapacitors [J].
Bai, Ming-Hua ;
Liu, Tian-Yu ;
Luan, Feng ;
Li, Yat ;
Liu, Xiao-Xia .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10882-10888
[2]  
Baltog I, 2009, ROM J PHYS, V54, P677
[3]   Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors [J].
Bian, Chaoqing ;
Yu, Aishui ;
Wu, Haoqing .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (02) :266-269
[4]   A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor [J].
Cai, Jian Jun ;
Kong, Ling Bin ;
Zhang, Jing ;
Luo, Yong Chun ;
Kang, Long .
CHINESE CHEMICAL LETTERS, 2010, 21 (12) :1509-1512
[5]   Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition [J].
Chen, Jiangqiong ;
Xia, Zhengbin ;
Li, Hui ;
Li, Qiao ;
Zhang, Yajun .
ELECTROCHIMICA ACTA, 2015, 166 :174-182
[6]   Inexpensive synthesis route of porous polyaniline-ruthenium oxide composite for supercapacitor application [J].
Deshmukh, P. R. ;
Patil, S. V. ;
Bulakhe, R. N. ;
Sartale, S. D. ;
Lokhande, C. D. .
CHEMICAL ENGINEERING JOURNAL, 2014, 257 :82-89
[7]   Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method [J].
Deshmukh, P. R. ;
Pusawale, S. N. ;
Shinde, N. M. ;
Lokhande, C. D. .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 65 (01) :80-86
[8]   Electromagnetic shielding behaviour of conducting polyaniline composites [J].
Dhawan, S. K. ;
Singh, N. ;
Rodrigues, D. .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2003, 4 (02) :105-113
[9]   Conducting polymer nanocomposites: A brief overview [J].
Gangopadhyay, R ;
De, A .
CHEMISTRY OF MATERIALS, 2000, 12 (03) :608-622
[10]  
Grzeszczuk M, 2013, INT J ELECTROCHEM SC, V8, P8951