Recent advances in the metabolic pathways and microbial production of coenzyme Q

被引:16
作者
Pierrel, Fabien [1 ]
Burgardt, Arthur [2 ,3 ]
Lee, Jin-Ho [4 ]
Pelosi, Ludovic [1 ]
Wendisch, Volker F. [2 ,3 ]
机构
[1] Univ Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup,Grenoble INP,TIMC, F-38000 Grenoble, France
[2] Bielefeld Univ, Fac Biol, Genet Prokaryotes, Bielefeld, Germany
[3] Bielefeld Univ, Ctr Biotechnol CeBiTec, Bielefeld, Germany
[4] Kyungsung Univ, Dept Food Sci & Biotechnol, Busan, South Korea
基金
新加坡国家研究基金会;
关键词
Coenzyme Q(10) (CoQ(10)); Corynebacterium glutamicum; Escherichia coli; Metabolic engineering; Q complex; Ubi super complex; Yeast; DECAPRENYL DIPHOSPHATE SYNTHASE; RECOMBINANT ESCHERICHIA-COLI; Q BIOSYNTHESIS PATHWAY; PARA-AMINOBENZOIC ACID; Q(10) PRODUCTION; UBIQUINONE BIOSYNTHESIS; ISOPRENOID BIOSYNTHESIS; RHODOBACTER-SPHAEROIDES; SHIKIMATE PATHWAY; BATCH-CULTURE;
D O I
10.1007/s11274-022-03242-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Coenzyme Q (CoQ) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. Here, we review discovery of the pathway with a particular focus on its superstructuration and regulation, and we summarize the metabolic engineering strategies for overproduction of CoQ by microorganisms. Studies in model microorganisms elucidated the details of CoQ biosynthesis and revealed the existence of multiprotein complexes composed of several enzymes that catalyze consecutive reactions in the CoQ pathways of Saccharomyces cerevisiae and Escherichia coli. Recent findings indicate that the identity and the total number of proteins involved in CoQ biosynthesis vary between species, which raises interesting questions about the evolution of the pathway and could provide opportunities for easier engineering of CoQ production. For the biotechnological production, so far only microorganisms have been used that naturally synthesize CoQ(10) or a related CoQ species. CoQ biosynthesis requires the aromatic precursor 4-hydroxybenzoic acid and the prenyl side chain that defines the CoQ species. Up to now, metabolic engineering strategies concentrated on the overproduction of the prenyl side chain as well as fine-tuning the expression of ubi genes from the ubiquinone modification pathway, resulting in high CoQ yields. With expanding knowledge about CoQ biosynthesis and exploration of new strategies for strain engineering, microbial CoQ production is expected to improve.
引用
收藏
页数:13
相关论文
共 120 条
  • [1] Advances in bacterial pathways for the biosynthesis of ubiquinone
    Abby, Sophie Saphia
    Kazemzadeh, Katayoun
    Vragniau, Charles
    Pelosi, Ludovic
    Pierrel, Fabien
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2020, 1861 (11):
  • [2] Coenzyme Q biosynthesis and its role in the respiratory chain structure
    Alcazar-Fabra, Maria
    Navas, Placido
    Brea-Calvo, Gloria
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2016, 1857 (08): : 1073 - 1078
  • [3] Identification of Coq11, a New Coenzyme Q Biosynthetic Protein in the CoQ-Synthome in Saccharomyces cerevisiae
    Allan, Christopher M.
    Awad, Agape M.
    Johnson, Jarrett S.
    Shirasaki, Dyna I.
    Wang, Charles
    Blaby-Haas, Crysten E.
    Merchant, Sabeeha S.
    Loo, Joseph A.
    Clarke, Catherine F.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (12) : 7517 - 7534
  • [4] Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges
    Arenas-Jal, Marta
    Sune-Negre, J. M.
    Garcia-Montoya, Encarna
    [J]. COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2020, 19 (02) : 574 - 594
  • [5] Biosynthesis and physiology of coenzyme Q in bacteria
    Aussel, Laurent
    Pierrel, Fabien
    Loiseau, Laurent
    Lombard, Murielle
    Fontecave, Marc
    Barras, Frederic
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (07): : 1004 - 1011
  • [6] Metabolic engineering of Bacillus subtilis for production of para-aminobenzoic acid - unexpected importance of carbon source is an advantage for space application
    Averesch, Nils J. H.
    Rothschild, Lynn J.
    [J]. MICROBIAL BIOTECHNOLOGY, 2019, 12 (04): : 703 - 714
  • [7] Chromatin-remodeling SWI/SNF complex regulates coenzyme Q6 synthesis and a metabolic shift to respiration in yeast
    Awad, Agape M.
    Venkataramanan, Srivats
    Nag, Anish
    Galivanche, Anoop Raj
    Bradley, Michelle C.
    Neves, Lauren T.
    Douglass, Stephen
    Clarke, Catherine F.
    Johnson, Tracy L.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (36) : 14851 - 14866
  • [8] Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q
    Ayer, Anita
    Fazakerley, Daniel J.
    Suarna, Cacang
    Maghzal, Ghassan J.
    Sheipouri, Diba
    Lee, Kevin J.
    Bradley, Michelle C.
    Fernandez-del-Rio, Lucia
    Tumanov, Sergey
    Kong, Stephanie My
    van der Veen, Jelske N.
    Yang, Andrian
    Ho, Joshua W. K.
    Clarke, Steven G.
    James, David E.
    Dawes, Ian W.
    Vance, Dennis E.
    Clarke, Catherine F.
    Jacobs, Rene L.
    Stocker, Roland
    [J]. REDOX BIOLOGY, 2021, 46
  • [9] Microbial synthesis of p-hydroxybenzoic acid from glucose
    Barker, JL
    Frost, JW
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (04) : 376 - 390
  • [10] The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency
    Baschiera, Elisa
    Sorrentino, Ugo
    Calderan, Cristina
    Desbats, Maria Andrea
    Salviati, Leonardo
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2021, 166 : 277 - 286