Graphene-Based Quantum Hall Effect Infrared Photodetectors

被引:0
作者
Kalugin, Nikolai G. [1 ]
Jing, Lei [2 ]
Bao, Wenzhong [2 ]
Wickey, Lee [1 ]
Del Barga, Christopher [1 ]
Ovezmyradov, Mekan [1 ]
Shaner, Eric A. [3 ]
Lau, Chun Ning [2 ]
机构
[1] New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA
[2] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA
[3] Ctr Integrated Nanotechnol & Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
QUANTUM SENSING AND NANOPHOTONIC DEVICES IX | 2012年 / 8268卷
基金
美国国家科学基金会; 美国能源部;
关键词
graphene; quantum Hall effect; infrared; photodetector; DETECTOR; DEVICES;
D O I
10.1117/12.921485
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene is a promising material for optoelectronics and photonics. Recent experiments demonstrated graphene photodectectors based on interband transitions working at Mid and Near-IR/Visible regions. Extension of spectral range to longer wavelengths requires alternative photoresponse mechanisms. One of the mechanisms which has been proven to be efficient for THz detection in "classical" semiconductor materials is the optically-induced breakdown of quantum Hall effect. In our work we successfully demonstrated a graphene-based QHE photodetector. Our result demonstrates the potential of graphene as a material for Far-IR photodetectors. Further improvement in device design and use of more efficient radiation coupling solutions should enable graphene photodetectors with broader spectral range, higher sensitivity, and elevated operating temperatures for a variety of applications.
引用
收藏
页数:6
相关论文
共 25 条
  • [1] Terahertz laser based on optically pumped graphene: Model and feasibility of realization
    Aleshkin, V. Ya.
    Dubinov, A. A.
    Ryzhii, V.
    [J]. JETP LETTERS, 2009, 89 (02) : 63 - 67
  • [2] Cyclotron resonance quantum Hall effect detector
    Antonov, AV
    Erofeeva, IV
    Gavrilenko, VI
    Kalugin, NG
    Korotkov, AL
    Maslovskii, AV
    Moldavskaya, MD
    Pripolzin, SI
    Vaks, VL
    Kawano, Y
    Komiyama, S
    [J]. ULTRAFAST PHENOMENA IN SEMICONDUCTORS, 1999, 297-2 : 353 - 356
  • [3] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [4] Temperature Limitations of Quantum Hall Far-Infrared Photodetectors
    Chen, Jeng-Chung
    Zhang, Jingbin
    Chi, Cheng-Chung
    Ueda, Takeji
    Komiyama, Susumu
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (03)
  • [5] Printed graphene circuits
    Chen, Jian-Hao
    Ishigami, Masa
    Jang, Chaun
    Hines, Daniel R.
    Fuhrer, Michael S.
    Williams, Ellen D.
    [J]. ADVANCED MATERIALS, 2007, 19 (21) : 3623 - 3627
  • [6] Cyclotron resonance study of the electron and hole velocity in graphene monolayers
    Deacon, R. S.
    Chuang, K.-C.
    Nicholas, R. J.
    Novoselov, K. S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW B, 2007, 76 (08)
  • [7] Nonvolatile switching in graphene field-effect devices
    Echtermeyer, Tim J.
    Lemme, Max C.
    Baus, Matthias
    Szafranek, Bartholomaeus N.
    Geim, Andre K.
    Kurz, Heinrich
    [J]. IEEE ELECTRON DEVICE LETTERS, 2008, 29 (08) : 952 - 954
  • [8] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [9] THz Photoresponse and Magnetotransport of detectors made of HgCdTe/HgTe quantum well structures
    Gouider, F.
    Bugar, M.
    Koenemann, J.
    Vasilyev, Yu. B.
    Bruene, C.
    Buhmann, H.
    Nachtwei, G.
    [J]. 16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
  • [10] Dynamics of the far-infrared photoresponse in quantum Hall systems
    Kalugin, NG
    Vasilyev, YB
    Suchalkin, SD
    Nachtwei, G
    Sagol, BE
    Eberl, K
    [J]. PHYSICAL REVIEW B, 2002, 66 (08): : 853081 - 853087