Guided Tree Topology Proposals for Bayesian Phylogenetic Inference

被引:69
作者
Hohna, Sebastian [1 ]
Drummond, Alexei J. [2 ,3 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] Univ Auckland, Dept Comp Sci, Auckland 1142, New Zealand
[3] Univ Auckland, Allan Wilson Ctr Mol Ecol & Evolut, Auckland 1142, New Zealand
关键词
Bayesian inference; Gibbs sampling; Markov chain Monte Carlo; phylogenetics; posterior probability distribution; tree topology proposals;
D O I
10.1093/sysbio/syr074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasingly, large data sets pose a challenge for computationally intensive phylogenetic methods such as Bayesian Markov chain Monte Carlo (MCMC). Here, we investigate the performance of common MCMC proposal distributions in terms of median and variance of run time to convergence on 11 data sets. We introduce two new Metropolized Gibbs Samplers for moving through "tree space." MCMC simulation using these new proposals shows faster average run time and dramatically improved predictability in performance, with a 20-fold reduction in the variance of the time to estimate the posterior distribution to a given accuracy. We also introduce conditional clade probabilities and demonstrate that they provide a superior means of approximating tree topology posterior probabilities from samples recorded during MCMC.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [41] Using confidence set heuristics during topology search improves the robustness of phylogenetic inference
    Pepke, Shirley L.
    Butt, Davin
    Nadeau, Isabelle
    Roger, Andrew J.
    Blouin, Christian
    JOURNAL OF MOLECULAR EVOLUTION, 2007, 64 (01) : 80 - 89
  • [42] Bayesian Inference for Hawkes Processes
    Rasmussen, Jakob Gulddahl
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2013, 15 (03) : 623 - 642
  • [43] Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method
    Yang, ZH
    Rannala, B
    MOLECULAR BIOLOGY AND EVOLUTION, 1997, 14 (07) : 717 - 724
  • [44] Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses
    Lanfear, Robert
    Hua, Xia
    Warren, Dan L.
    GENOME BIOLOGY AND EVOLUTION, 2016, 8 (08): : 2319 - 2332
  • [45] Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10
    Suchard, Marc A.
    Lemey, Philippe
    Baele, Guy
    Ayres, Daniel L.
    Drummond, Alexei J.
    Rambaut, Andrew
    VIRUS EVOLUTION, 2018, 4 (01)
  • [46] siMBa-a simple graphical user interface for the Bayesian phylogenetic inference program MrBayes
    Mishra, Bagdevi
    Thines, Marco
    MYCOLOGICAL PROGRESS, 2014, 13 (04) : 1255 - 1258
  • [47] Geometric ergodicity of a Metropolis-Hastings algorithm for Bayesian inference of phylogenetic branch lengths
    Spade, David A.
    COMPUTATIONAL STATISTICS, 2020, 35 (04) : 2043 - 2076
  • [48] An Efficient Independence Sampler for Updating Branches in Bayesian Markov chain Monte Carlo Sampling of Phylogenetic Trees
    Aberer, Andre J.
    Stamatakis, Alexandros
    Ronquist, Fredrik
    SYSTEMATIC BIOLOGY, 2016, 65 (01) : 161 - 176
  • [49] Geometric ergodicity of a Metropolis-Hastings algorithm for Bayesian inference of phylogenetic branch lengths
    David A. Spade
    Computational Statistics, 2020, 35 : 2043 - 2076
  • [50] Bayesian inference for multivariate gamma distributions
    Tsionas, EG
    STATISTICS AND COMPUTING, 2004, 14 (03) : 223 - 233