Guided Tree Topology Proposals for Bayesian Phylogenetic Inference

被引:69
作者
Hohna, Sebastian [1 ]
Drummond, Alexei J. [2 ,3 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] Univ Auckland, Dept Comp Sci, Auckland 1142, New Zealand
[3] Univ Auckland, Allan Wilson Ctr Mol Ecol & Evolut, Auckland 1142, New Zealand
关键词
Bayesian inference; Gibbs sampling; Markov chain Monte Carlo; phylogenetics; posterior probability distribution; tree topology proposals;
D O I
10.1093/sysbio/syr074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasingly, large data sets pose a challenge for computationally intensive phylogenetic methods such as Bayesian Markov chain Monte Carlo (MCMC). Here, we investigate the performance of common MCMC proposal distributions in terms of median and variance of run time to convergence on 11 data sets. We introduce two new Metropolized Gibbs Samplers for moving through "tree space." MCMC simulation using these new proposals shows faster average run time and dramatically improved predictability in performance, with a 20-fold reduction in the variance of the time to estimate the posterior distribution to a given accuracy. We also introduce conditional clade probabilities and demonstrate that they provide a superior means of approximating tree topology posterior probabilities from samples recorded during MCMC.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] 19 Dubious Ways to Compute the Marginal Likelihood of a Phylogenetic Tree Topology
    Fourment, Mathieu
    Magee, Andrew F.
    Whidden, Chris
    Bilge, Arman
    Matsen, Frederick A.
    Minin, Vladimir N.
    SYSTEMATIC BIOLOGY, 2020, 69 (02) : 209 - 220
  • [32] Bayesian Inference Using Artificial Augmenting Regressions
    Tsionas, Efthymios G.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (09) : 1361 - 1370
  • [33] siMBa—a simple graphical user interface for the Bayesian phylogenetic inference program MrBayes
    Bagdevi Mishra
    Marco Thines
    Mycological Progress, 2014, 13
  • [34] The Effect of Ambiguous Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference
    Lemmon, Alan R.
    Brown, Jeremy M.
    Stanger-Hall, Kathrin
    Lemmon, Emily Moriarty
    SYSTEMATIC BIOLOGY, 2009, 58 (01) : 130 - 145
  • [35] The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection
    Yu, Yun
    Degnan, James H.
    Nakhleh, Luay
    PLOS GENETICS, 2012, 8 (04): : 456 - 465
  • [36] Phylogenetic Tree Inference: A Top-Down Approach to Track Tumor Evolution
    Wu, Pin
    Hou, Linjun
    Zhang, Yingdong
    Zhang, Liye
    FRONTIERS IN GENETICS, 2020, 10
  • [37] Bayesian Inference for Hawkes Processes
    Jakob Gulddahl Rasmussen
    Methodology and Computing in Applied Probability, 2013, 15 : 623 - 642
  • [38] Editorial: Bayesian Inference and AI
    Tang, Niansheng
    Liu, Catherine
    Shi, Jian Qing
    Huang, Yangxin
    FRONTIERS IN BIG DATA, 2022, 5
  • [39] Using Confidence Set Heuristics During Topology Search Improves the Robustness of Phylogenetic Inference
    Shirley L. Pepke
    Davin Butt
    Isabelle Nadeau
    Andrew J. Roger
    Christian Blouin
    Journal of Molecular Evolution, 2007, 64 : 80 - 89
  • [40] Bayesian inference for psychometric functions
    Kuss, M
    Jäkel, F
    Wichmann, FA
    JOURNAL OF VISION, 2005, 5 (05): : 478 - 492