Guided Tree Topology Proposals for Bayesian Phylogenetic Inference

被引:69
作者
Hohna, Sebastian [1 ]
Drummond, Alexei J. [2 ,3 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] Univ Auckland, Dept Comp Sci, Auckland 1142, New Zealand
[3] Univ Auckland, Allan Wilson Ctr Mol Ecol & Evolut, Auckland 1142, New Zealand
关键词
Bayesian inference; Gibbs sampling; Markov chain Monte Carlo; phylogenetics; posterior probability distribution; tree topology proposals;
D O I
10.1093/sysbio/syr074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasingly, large data sets pose a challenge for computationally intensive phylogenetic methods such as Bayesian Markov chain Monte Carlo (MCMC). Here, we investigate the performance of common MCMC proposal distributions in terms of median and variance of run time to convergence on 11 data sets. We introduce two new Metropolized Gibbs Samplers for moving through "tree space." MCMC simulation using these new proposals shows faster average run time and dramatically improved predictability in performance, with a 20-fold reduction in the variance of the time to estimate the posterior distribution to a given accuracy. We also introduce conditional clade probabilities and demonstrate that they provide a superior means of approximating tree topology posterior probabilities from samples recorded during MCMC.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] ParBaum: A fast program for phylogenetic tree inference with maximum likelihood
    Stamatakis, AP
    Ludwig, T
    Meier, H
    High Performance Computing in Science and Engineering, Garching 2004, 2005, : 275 - 284
  • [22] Efficient Bayesian Species Tree Inference under the Multispecies Coalescent
    Rannala, Bruce
    Yang, Ziheng
    SYSTEMATIC BIOLOGY, 2017, 66 (05) : 823 - 842
  • [23] Geometric ergodicity of a hybrid sampler for Bayesian inference of phylogenetic branch lengths
    Spade, David A.
    Herbei, Radu
    Kubatko, Laura S.
    MATHEMATICAL BIOSCIENCES, 2015, 268 : 9 - 21
  • [24] EFFICIENT BAYESIAN INFERENCE OF GENERAL GAUSSIAN MODELS ON LARGE PHYLOGENETIC TREES
    Bastide, Paul
    Ho, Lam Si Tung
    Baele, Guy
    Lemey, Philippe
    Suchard, Marc A.
    ANNALS OF APPLIED STATISTICS, 2021, 15 (02) : 971 - 997
  • [25] An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference
    Miller, RE
    Buckley, TR
    Manos, PS
    SYSTEMATIC BIOLOGY, 2002, 51 (05) : 740 - 753
  • [26] User-Guided Program Reasoning using Bayesian Inference
    Raghothaman, Mukund
    Kulkarni, Sulekha
    Heo, Kihong
    Naik, Mayur
    PROCEEDINGS OF THE 39TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, PLDI 2018, 2018, : 722 - 735
  • [27] User-guided program reasoning using Bayesian inference
    Raghothaman M.
    Kulkarni S.
    Heo K.
    Naik M.
    ACM SIGPLAN Notices, 2018, 53 (04): : 722 - 735
  • [28] User-Guided Program Reasoning using Bayesian Inference
    Raghothaman, Mukund
    Kulkarni, Sulekha
    Heo, Kihong
    Naik, Mayur
    ACM SIGPLAN NOTICES, 2018, 53 (04) : 722 - 735
  • [29] Reversible polymorphism-aware phylogenetic models and their application to tree inference
    Schrempf, Dominik
    Bui Quang Minh
    De Maio, Nicola
    von Haeseler, Arndt
    Kosiol, Carolin
    JOURNAL OF THEORETICAL BIOLOGY, 2016, 407 : 362 - 370
  • [30] The identifiability of tree topology for phylogenetic models, including covarion and mixture models
    Allman, Elizabeth S.
    Rhodes, John A.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (05) : 1101 - 1113