Guided Tree Topology Proposals for Bayesian Phylogenetic Inference

被引:69
作者
Hohna, Sebastian [1 ]
Drummond, Alexei J. [2 ,3 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] Univ Auckland, Dept Comp Sci, Auckland 1142, New Zealand
[3] Univ Auckland, Allan Wilson Ctr Mol Ecol & Evolut, Auckland 1142, New Zealand
关键词
Bayesian inference; Gibbs sampling; Markov chain Monte Carlo; phylogenetics; posterior probability distribution; tree topology proposals;
D O I
10.1093/sysbio/syr074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasingly, large data sets pose a challenge for computationally intensive phylogenetic methods such as Bayesian Markov chain Monte Carlo (MCMC). Here, we investigate the performance of common MCMC proposal distributions in terms of median and variance of run time to convergence on 11 data sets. We introduce two new Metropolized Gibbs Samplers for moving through "tree space." MCMC simulation using these new proposals shows faster average run time and dramatically improved predictability in performance, with a 20-fold reduction in the variance of the time to estimate the posterior distribution to a given accuracy. We also introduce conditional clade probabilities and demonstrate that they provide a superior means of approximating tree topology posterior probabilities from samples recorded during MCMC.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Adaptive Tree Proposals for Bayesian Phylogenetic Inference
    Meyer, X.
    SYSTEMATIC BIOLOGY, 2021, 70 (05) : 1015 - 1032
  • [2] Sequential Bayesian Phylogenetic Inference
    Hoehna, Sebastian
    Hsiang, Allison Y.
    SYSTEMATIC BIOLOGY, 2024, 73 (04) : 704 - 721
  • [3] Polytomies and Bayesian phylogenetic inference
    Lewis, PO
    Holder, MT
    Holsinger, KE
    SYSTEMATIC BIOLOGY, 2005, 54 (02) : 241 - 253
  • [4] On the importance of assessing topological convergence in Bayesian phylogenetic inference
    Brusselmans, Marius
    Carvalho, Luiz Max
    L. Hong, Samuel
    Gao, Jiansi
    Matsen Iv, Frederick A.
    Rambaut, Andrew
    Lemey, Philippe
    Suchard, Marc A.
    Dudas, Gytis
    Baele, Guy
    VIRUS EVOLUTION, 2024, 10 (01)
  • [5] Calibrated Birth-Death Phylogenetic Time-Tree Priors for Bayesian Inference
    Heled, Joseph
    Drummond, Alexei J.
    SYSTEMATIC BIOLOGY, 2015, 64 (03) : 369 - 383
  • [6] The Limits of the Constant-rate Birth-Death Prior for Phylogenetic Tree Topology Inference
    Khurana, Mark P.
    Scheidwasser-Clow, Neil
    Penn, Matthew J.
    Bhatt, Samir
    Duchene, David A.
    SYSTEMATIC BIOLOGY, 2024, 73 (01) : 235 - 246
  • [7] DM-PhyClus: a Bayesian phylogenetic algorithm for infectious disease transmission cluster inference
    Luc Villandré
    Aurélie Labbe
    Bluma Brenner
    Michel Roger
    David A Stephens
    BMC Bioinformatics, 19
  • [8] DM-PhyClus: a Bayesian phylogenetic algorithm for infectious disease transmission cluster inference
    Villandre, Luc
    Labbe, Aurelie
    Brenner, Bluma
    Roger, Michel
    Stephens, David A.
    BMC BIOINFORMATICS, 2018, 19
  • [9] Empirical evaluation of a prior for Bayesian phylogenetic inference
    Yang, Ziheng
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1512) : 4031 - 4039
  • [10] Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics
    Lakner, Clemens
    Van Der Mark, Paul
    Huelsenbeck, John P.
    Larget, Bret
    Ronquist, Fredrik
    SYSTEMATIC BIOLOGY, 2008, 57 (01) : 86 - 103