Global weak solutions for a modified two-component Camassa-Holm equation

被引:41
作者
Guan, Chunxia [1 ]
Yin, Zhaoyang [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2011年 / 28卷 / 04期
关键词
A modified two-component Camassa-Holm equation; Well-posedness; Blow-up scenario; Strong solution; Global weak solution; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; WELL-POSEDNESS; CONSERVATIVE SOLUTIONS; DISSIPATIVE SOLUTIONS; BREAKING WAVES; SCATTERING; EXISTENCE; TRAJECTORIES;
D O I
10.1016/j.anihpc.2011.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the existence of global-in-time weak solutions for the Cauchy problem of a modified two-component Camassa-Holm equation. The global weak solution is obtained as a limit of viscous approximation. The key elements in our analysis are the Helly theorem and some a priori one-sided supernorm and space time higher integrability estimates on the first-order derivatives of approximation solutions. (C) 2011 Elsevier Masson SAS. All riehis reserved.
引用
收藏
页码:623 / 641
页数:19
相关论文
共 55 条
[1]  
[Anonymous], 1983, APPL MATH SCI
[3]   Acoustic scattering and the extended Korteweg-de Vries hierarchy [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 1998, 140 (02) :190-206
[4]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[5]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[6]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[7]  
Camassa R., 1994, Advances in Applied Mechanics, V31, P1
[8]   A two-component generalization of the Camassa-Holm equation and its solutions [J].
Chen, M ;
Liu, SQ ;
Zhang, YJ .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :1-15
[9]   Global weak solutions to a generalized hyperelastic-rod wave equation [J].
Coclite, GM ;
Holden, H ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) :1044-1069
[10]   Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis [J].
Constantin, A. ;
Johnson, R. S. .
FLUID DYNAMICS RESEARCH, 2008, 40 (03) :175-211