Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass

被引:89
作者
Alexandrou, C. [1 ,2 ]
Bacchio, S. [2 ]
Constantinou, M. [3 ]
Finkenrath, J. [2 ]
Hadjiyiannakou, K. [1 ,2 ]
Jansen, K. [4 ]
Koutsou, G. [2 ]
Panagopoulos, H. [1 ]
Spanoudes, G. [1 ]
机构
[1] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus
[2] Cyprus Inst, Computat Based Sci & Technol Res Ctr, 20 Kavafi St, CY-2121 Nicosia, Cyprus
[3] Temple Univ, Dept Phys, 1925 N 12th St, Philadelphia, PA 19122 USA
[4] DESY, NIC, Platanenallee 6, D-15738 Zeuthen, Germany
来源
PHYSICAL REVIEW D | 2020年 / 101卷 / 09期
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
DEEP-INELASTIC-SCATTERING; NONPERTURBATIVE RENORMALIZATION; ASYMMETRY; POLARIZATION; SYSTEMS; TENSOR; G1;
D O I
10.1103/PhysRevD.101.094513
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We evaluate the gluon and quark contributions to the spin of the proton using an ensemble of gauge configurations generated at physical pion mass. We compute all valence and sea quark contributions to high accuracy. We perform a nonperturbative renormalization for both quark and gluon matrix elements. We find that the contribution of the up, down, strange, and charm quarks to the proton intrinsic spin is 1/2 Sigma(q=u,d,s,c) Delta Sigma(q+) = 0.191(15) and to the total spin Sigma(q=u,d,s,c) Jq(+) = 0.285(45)(10). The gluon contribution to the spin is J(g) = 0.187(46)(10) yielding J = J(q) + J(g) = 0.473(71)(14) confirming the spin sum. The momentum fraction carried by quarks in the proton is found to be 0.618(60) and by gluons 0.427(92), the sum of which gives 1.045(118) confirming the momentum sum rule. All scale and scheme dependent quantities are given in the (MS) over bar scheme at 2 GeV.
引用
收藏
页数:28
相关论文
共 99 条
  • [61] Quark orbital dynamics in the proton from lattice QCD: From Ji to Jaffe-Manohar orbital angular momentum
    Engelhardt, M.
    [J]. PHYSICAL REVIEW D, 2017, 95 (09)
  • [62] First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis
    Ethier, J. J.
    Sato, N.
    Melnitchouk, W.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (13)
  • [63] FREZZOTTI R, 2004, J HIGH ENERGY PHYS
  • [64] FREZZOTTI R, 2001, J HIGH ENERGY PHYS
  • [65] DEFLATION AS A METHOD OF VARIANCE REDUCTION FOR ESTIMATING THE TRACE OF A MATRIX INVERSE
    Gambhir, Arjun Singh
    Stathopoulos, Andreas
    Orginos, Kostas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02) : A532 - A558
  • [66] Ghiotti M., 2007, THESIS
  • [67] Non-perturbative renormalisation of composite operators in lattice QCD
    Göckeler, M
    Horsley, R
    Oelrich, H
    Perlt, H
    Petters, D
    Rakow, PEL
    Schäfer, A
    Schierholz, G
    Schiller, A
    [J]. NUCLEAR PHYSICS B, 1999, 544 (03) : 699 - 733
  • [68] Gockeler M, 1997, NUCL PHYS B, P324, DOI 10.1016/S0920-5632(96)00650-0
  • [69] Nucleon form factors of the energy-momentum tensor in the chiral quark-soliton model
    Goeke, K.
    Grabis, J.
    Ossmann, J.
    Polyakov, M. V.
    Schweitzer, P.
    Silva, A.
    Urbano, D.
    [J]. PHYSICAL REVIEW D, 2007, 75 (09):
  • [70] Three loop (MS)over-bar operator correlation functions for deep inelastic scattering in the chiral limit
    Gracey, J. A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):