Quantum permutation groups: A survey

被引:34
作者
Banica, Teodor [1 ]
Bichon, Julien [2 ]
Collins, Benoit [3 ,4 ]
机构
[1] Paul Sabatier Univ, Dept Math, 118 Route Narbonne, F-31062 Toulouse, France
[2] Blaise Pascal Univ, Dept Math, F-63177 Aubiere, France
[3] Claude Bernard Univ, Dept Math, F-69622 Villeurbanne, France
[4] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
来源
NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY | 2007年 / 78卷
关键词
D O I
10.4064/bc78-0-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a presentation of recent work on quantum permutation groups. Contains: a short introduction to operator algebras and Hopf algebras, quantum permutation groups, and their basic properties; diagrams, integration formulae, asymptotic laws, matrix models; the hyperoctahedral quantum group, free wreath products, quantum automorphism groups of finite graphs, graphs having no quantum symmetry; complex Hadamard matrices, cocycle twists of the symmetric group, quantum groups acting on 4 points; remarks and comments.
引用
收藏
页码:13 / +
页数:5
相关论文
共 59 条
[51]  
VERGNIOUX R, IN PRESS J OPERATOR
[52]  
VOICULESCU D, 2000, LECT NOTES MATH, V1738, P279
[53]  
Voiculescu D., 1992, FREE RANDOM VARIABLE
[54]   FREE-PRODUCTS OF COMPACT QUANTUM GROUPS [J].
WANG, SZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 167 (03) :671-692
[55]   Quantum symmetry groups of finite spaces [J].
Wang, SZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (01) :195-211
[56]   ASYMPTOTIC-BEHAVIOR OF GROUP INTEGRALS IN LIMIT OF INFINITE RANK [J].
WEINGARTEN, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :999-1001
[57]   COMPACT MATRIX PSEUDOGROUPS [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (04) :613-665
[58]   TANNAKA-KREIN DUALITY FOR COMPACT MATRIX PSEUDOGROUPS - TWISTED SU(N) GROUPS [J].
WORONOWICZ, SL .
INVENTIONES MATHEMATICAE, 1988, 93 (01) :35-76
[59]  
YURESHETIKHIN N, 1990, LENINGRAD MATH J, V1, P193