Quantum permutation groups: A survey

被引:34
作者
Banica, Teodor [1 ]
Bichon, Julien [2 ]
Collins, Benoit [3 ,4 ]
机构
[1] Paul Sabatier Univ, Dept Math, 118 Route Narbonne, F-31062 Toulouse, France
[2] Blaise Pascal Univ, Dept Math, F-63177 Aubiere, France
[3] Claude Bernard Univ, Dept Math, F-69622 Villeurbanne, France
[4] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
来源
NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY | 2007年 / 78卷
关键词
D O I
10.4064/bc78-0-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a presentation of recent work on quantum permutation groups. Contains: a short introduction to operator algebras and Hopf algebras, quantum permutation groups, and their basic properties; diagrams, integration formulae, asymptotic laws, matrix models; the hyperoctahedral quantum group, free wreath products, quantum automorphism groups of finite graphs, graphs having no quantum symmetry; complex Hadamard matrices, cocycle twists of the symmetric group, quantum groups acting on 4 points; remarks and comments.
引用
收藏
页码:13 / +
页数:5
相关论文
共 59 条
[1]   Symmetries of a generic coaction [J].
Banica, T .
MATHEMATISCHE ANNALEN, 1999, 314 (04) :763-780
[2]   Quantum automorphism groups of homogeneous graphs [J].
Banica, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) :243-280
[3]   Quantum automorphism groups of small metric spaces [J].
Banica, T .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 219 (01) :27-51
[4]  
BANICA T, IN PRESS ANNI FOURIE
[5]  
Banica T., 2007, PANAMER MATH J, V17, P1
[6]  
BANICA T, IN PRESS PUBL RES I
[7]  
BANICA T, IN PRESS J ALGEBRAIC
[8]  
BANICA T, MATHOA0611232
[9]  
BANICA T, MATHQA0703118
[10]  
BANICA T, MATHQA0610041