Silicon quantum dot/black silicon hybrid nanostructure for broadband reflection reduction

被引:9
作者
Rashid, Marzaini [1 ]
Ahmed, Naser M. [1 ]
Noor, Nur Afidah Md [1 ]
Pakhuruddin, Mohd Zamir [1 ]
机构
[1] Univ Sains Malaysia, Sch Phys, Minden 11800, Penang, Malaysia
关键词
Quantum dot; Black silicon; Broadband reflection reduction; Photon down-conversion; POROUS SILICON; SOLAR-CELLS; EFFICIENCY; DOTS; LUMINESCENCE;
D O I
10.1016/j.mssp.2020.105113
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The incorporation of silicon quantum dots (Si QDs) onto black silicon (b-Si) as a hybrid nanostructure has resulted in reflectance reduction over a wide spectral range (300-1000 nm). Si QDs were derived from porous Si (P-Si) by anodic electrochemical etching and ultrasonication whereas b-Si was fabricated by the two-step metal assisted chemical etching (MACE) technique. Si QDs with average diameter of 1.8 +/- 1.1 nm are suitable for photon down-conversion of UV light (365 nm) into the visible (665 and 740 nm). As a hybrid nanostructure, smaller sized Si QDs exhibited better surface coverage on the b-Si nanopillar sidewalls resulting in enhanced broadband reflection reduction, particularly at 600 nm and beyond. At wavelength of 600 nm, the Si QD/b-Si nanostructure exhibited a reflectance reduction from 9.9% to 6.5% with a more pronounced reduction towards the longer wavelengths, attributed to refractive index matching and optical confinement within the Si nanostructure. Photocurrent enhancement in the UV-blue excitation region is attributed to photon downconversion (UV to visible) by Si QDs to the underlying b-Si.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Quantum confinement in Si and Ge nanostructures [J].
Barbagiovanni, E. G. ;
Lockwood, D. J. ;
Simpson, P. J. ;
Goncharova, L. V. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
[2]   Porous silicon: a quantum sponge structure for silicon based optoelectronics [J].
Bisi, O ;
Ossicini, S ;
Pavesi, L .
SURFACE SCIENCE REPORTS, 2000, 38 (1-3) :1-126
[3]   Semiconductor Nanowire Optical Antenna Solar Absorbers [J].
Cao, Linyou ;
Fan, Pengyu ;
Vasudev, Alok P. ;
White, Justin S. ;
Yu, Zongfu ;
Cai, Wenshan ;
Schuller, Jon A. ;
Fan, Shanhui ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (02) :439-445
[4]   Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers [J].
Chen, Hsin-Chu ;
Lin, Chien-Chung ;
Han, Hao-Wei ;
Tsai, Yu-Lin ;
Chang, Chia-Hua ;
Wang, Hsun-Wen ;
Tsai, Min-An ;
Kuo, Hao-Chung ;
Yu, Peichen .
OPTICS EXPRESS, 2011, 19 (19) :A1141-A1147
[5]   Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes [J].
Chen, Junyi ;
Subramani, Thiyagu ;
Sun, Yonglie ;
Jevasuwan, Wipakorn ;
Fukata, Naoki .
APPLIED SURFACE SCIENCE, 2018, 439 :1057-1064
[6]   Tuning of Refractive Indices and Optical Band Gaps in Oxidized Silicon Quantum Dot Solids [J].
Choi, Jin-Kyu ;
Jang, Seunghyun ;
Sohn, Honglae ;
Jeong, Hyun-Dam .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (49) :17894-17900
[7]   Rapid thermal annealing treated spin-on doped antireflective radial junction Si nanopillar solar cell [J].
Choudhury, Bikash Dev ;
Anand, Srinivasan .
OPTICS EXPRESS, 2017, 25 (08) :A200-A207
[8]   The structural and luminescence properties of porous silicon [J].
Cullis, AG ;
Canham, LT ;
Calcott, PDJ .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) :909-965
[9]   White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size [J].
Dohnalova, K. ;
Ondic, L. ;
Kusova, K. ;
Pelant, I. ;
Rehspringer, J. L. ;
Mafouana, R. -R. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
[10]   High Efficiency Hybrid Solar Cells Using Nanocrystalline Si Quantum Dots and Si Nanowires [J].
Dutta, Mrinal ;
Thirugnanam, Lavanya ;
Van Trinh, Pham ;
Fukata, Naoki .
ACS NANO, 2015, 9 (07) :6891-6899