Sub-hertz fundamental linewidth photonic integrated Brillouin laser

被引:327
作者
Gundavarapu, Sarat [1 ]
Brodnik, Grant M. [1 ]
Puckett, Matthew [2 ]
Huffman, Taran [1 ]
Bose, Debapam [1 ]
Behunin, Ryan [3 ]
Wu, Jianfeng [2 ]
Qiu, Tiequn [2 ]
Pinho, Catia [4 ]
Chauhan, Nitesh [1 ]
Nohava, Jim [5 ]
Rakich, Peter T. [6 ]
Nelson, Karl D. [5 ]
Salit, Mary [5 ]
Blumenthal, Daniel J. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Honeywell Int, Phoenix, AZ USA
[3] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA
[4] Univ Aveiro, IT, Aveiro, Portugal
[5] Honeywell Int, Plymouth, MN USA
[6] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
关键词
FREQUENCY COMBS; SILICON-NITRIDE; FIBER LASER; NOISE; STABILIZATION; MICROCAVITY; PHASE;
D O I
10.1038/s41566-018-0313-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spectrally pure lasers, the heart of precision high-end scientific and commercial applications, are poised to make the leap from the laboratory to integrated circuits. Translating this performance to integrated photonics will dramatically reduce cost and footprint for applications such as ultrahigh capacity fibre and data centre networks, atomic clocks and sensing. Despite the numerous applications, integrated lasers currently suffer from large linewidth. Brillouin lasers, with their unique properties, offer an intriguing solution, yet bringing their performance to integrated platforms has remained elusive. Here, we demonstrate a sub-hertz (similar to 0.7 Hz) fundamental linewidth Brillouin laser in an integrated Si3N4 waveguide platform that translates advantages of non-integrated designs to the chip scale. This silicon-foundry-compatible design supports low loss from 405 to 2,350 nm and can be integrated with other components. Single- and multiple-frequency output operation provides a versatile low phase-noise solution. We highlight this by demonstrating an optical gyroscope and a low-phase-noise photonic oscillator.
引用
收藏
页码:60 / +
页数:10
相关论文
共 50 条
[21]   CW BRILLOUIN LASER [J].
HILL, KO ;
KAWASAKI, BS ;
JOHNSON, DC .
APPLIED PHYSICS LETTERS, 1976, 28 (10) :608-609
[22]   Single-source chip-based frequency comb enabling extreme parallel data transmission [J].
Hu, Hao ;
Da Ros, Francesco ;
Pu, Minhao ;
Ye, Feihong ;
Ingerslev, Kasper ;
da Silva, Edson Porto ;
Nooruzzaman, Md. ;
Amma, Yoshimichi ;
Sasaki, Yusuke ;
Mizuno, Takayuki ;
Miyamoto, Yutaka ;
Ottaviano, Luisa ;
Semenova, Elizaveta ;
Guan, Pengyu ;
Zibar, Darko ;
Galili, Michael ;
Yvind, Kresten ;
Morioka, Toshio ;
Oxenlowe, Leif K. .
NATURE PHOTONICS, 2018, 12 (08) :469-+
[23]   Integrated Resonators in an Ultralow Loss Si3N4/SiO2 Platform for Multifunction Applications [J].
Huffman, Taran Arthur ;
Brodnik, Grant M. ;
Pinho, Catia ;
Gundavarapu, Sarat ;
Baney, Douglas ;
Blumenthal, Daniel J. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (04)
[24]   Narrow linewidth Brillouin laser based on chalcogenide photonic chip [J].
Kabakova, Irina V. ;
Pant, Ravi ;
Choi, Duk-Yong ;
Debbarma, Sukhanta ;
Luther-Davies, Barry ;
Madden, Stephen J. ;
Eggleton, Benjamin J. .
OPTICS LETTERS, 2013, 38 (17) :3208-3211
[25]   Fundamentals of Coherent Optical Fiber Communications [J].
Kikuchi, Kazuro .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (01) :157-179
[26]   Atomic Sensors - A Review [J].
Kitching, John ;
Knappe, Svenja ;
Donley, Elizabeth A. .
IEEE SENSORS JOURNAL, 2011, 11 (09) :1749-1758
[27]  
Lee H, 2012, NAT PHOTONICS, V6, P369, DOI [10.1038/NPHOTON.2012.109, 10.1038/nphoton.2012.109]
[28]   Microresonator Brillouin gyroscope [J].
Li, Jiang ;
Suh, Myoung-Gyun ;
Vahala, Kerry .
OPTICA, 2017, 4 (03) :346-348
[29]   Microwave synthesizer using an on-chip Brillouin oscillator [J].
Li, Jiang ;
Lee, Hansuek ;
Vahala, Kerry J. .
NATURE COMMUNICATIONS, 2013, 4
[30]   Sideband spectroscopy and dispersion measurement in microcavities [J].
Li, Jiang ;
Lee, Hansuek ;
Yang, Ki Youl ;
Vahala, Kerry J. .
OPTICS EXPRESS, 2012, 20 (24) :26337-26350