Optical solitons and conservation law of Kundu-Eckhaus equation

被引:147
作者
Mirzazadeh, Mohammad [1 ]
Yildirim, Yakup [2 ]
Yasar, Emrullah [2 ]
Triki, Houria [3 ]
Zhou, Qin [4 ]
Moshokoa, Seithuti P. [5 ]
Ullah, Malik Zaka [6 ]
Seadawy, Aly R. [7 ,8 ]
Biswas, Anjan [5 ,6 ]
Belic, Milivoj [9 ]
机构
[1] Univ Guilan, East Guilan, Fac Technol & Engn, Dept Engn Sci, Rudsar Vajargah 4489163157, Iran
[2] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
[3] Badji Mokhtar Univ, Dept Phys, Radiat Phys Lab, Fac Sci, POB 12, Annaba 23000, Algeria
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[5] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[6] King Abdulaziz Univ, Dept Math, Operator Theory & Applicat Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[7] Taibah Univ, Fac Sci & Arts, Math Dept, Al Ula, Saudi Arabia
[8] Beni Suef Univ, Fac Sci, Math Dept, Bani Suwayf, Egypt
[9] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2018年 / 154卷
关键词
Solitons; Integrability; KUDRYASHOV METHOD; DARK; FIBERS;
D O I
10.1016/j.ijleo.2017.10.084
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper obtains optical soliton solutions to the Kundu Eckhaus equation with general coefficients. The Riccati Bernoulli's sub-ODE method as well as Kudryashov's scheme are employed to obtain soliton solutions to the model. This generalized earlier reported result of the model with specific coefficients. Subsequently, the multiplier approach was utilized to secure a conserved quantity with the bright soliton solution that was reported earlier. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:551 / 557
页数:7
相关论文
共 15 条
[1]   Application of the generalized Kudryashov method to the Eckhaus equation [J].
Arnous, Ahmed H. ;
Mirzazadeh, Mohammad .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (05) :577-586
[2]  
Baskonus H.M., 2015, WAVES RANDOM COMPLEX
[3]  
Bayndr C., 2016, PHYS REV E, V93
[4]   Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G-expansion scheme [J].
Ekici, Mehmet ;
Mirzazadeh, Mohammad ;
Sonmezoglu, Abdullah ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Biswas, Anjan ;
Belic, Milivoj .
OPTIK, 2016, 127 (22) :10490-10497
[5]   Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov's method [J].
El-Borai, M. M. ;
El-Owaidy, H. M. ;
Ahmed, Hamdy M. ;
Arnous, Ahmed H. ;
Moshokoa, Seithuti ;
Biswas, Anjan ;
Belic, Milivoj .
OPTIK, 2017, 128 :57-62
[6]   Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities [J].
Hosseini, K. ;
Mayeli, P. ;
Ansari, R. .
OPTIK, 2017, 130 :737-742
[7]  
Korkmaz A., ARXIV161107086V2NLIN
[8]  
Kumar S, 2016, OPTOELECTRON ADV MAT, V10, P21
[9]   The Kundu-Eckhaus equation and its discretizations [J].
Levi, Decio ;
Scimiterna, Christian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (46)
[10]   Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))-expansion method [J].
Manafian, Jalil ;
Lakestani, Mehrdad .
OPTIK, 2016, 127 (14) :5543-5551