Pairing Computation on Elliptic Curves of Jacobi Quartic Form

被引:0
作者
Wang Hong [1 ]
Wang Kunpeng [1 ]
Zhang Lijun [1 ]
Li Bao [1 ]
机构
[1] Chinese Acad Sci, Grad Univ, State Key Lab Informat Secur, Beijing 100049, Peoples R China
来源
CHINESE JOURNAL OF ELECTRONICS | 2011年 / 20卷 / 04期
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Elliptic curve; Jacobi quartic curve; Tate pairing; Miller function; Group law; Geometric interpretation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes explicit formulae for the addition step and doubling step in Miller's algorithm to compute Tate pairing on Jacobi quartic curves. We present a geometric interpretation of the group law on Jacobi. quartic curves, which leads to formulae for Miller's algorithm. The doubling step formula is competitive with that for Weierstrass curves and Edwards curves. Moreover, by carefully choosing the coefficients, there exist quartic twists of Jacobi quartic curves from which pairing computation can benefit a lot. Finally, we provide some examples of supersingular and ordinary pairing friendly Jacobi quartic curves.
引用
收藏
页码:655 / 661
页数:7
相关论文
共 50 条
  • [21] Fixed argument pairing inversion on elliptic curves
    Kim, Sungwook
    Cheon, Jung Hee
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2015, 77 (01) : 143 - 152
  • [22] Fixed argument pairing inversion on elliptic curves
    Sungwook Kim
    Jung Hee Cheon
    [J]. Designs, Codes and Cryptography, 2015, 77 : 143 - 152
  • [23] Characteristic Polynomials of a class of Jacobi quartic Curves over Finite Field
    Wang, Dongqin
    You, Lin
    [J]. 2014 INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI 2014), 2014, : 89 - 93
  • [24] Efficient Pairing Computation on Twisted Weierstrass Curves
    Wang Bei
    Ouyang Yi
    Hu Honggang
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (04) : 739 - 745
  • [25] Efficient Pairing Computation on Twisted Weierstrass Curves
    WANG Bei
    OUYANG Yi
    HU Honggang
    [J]. Chinese Journal of Electronics, 2018, 27 (04) : 739 - 745
  • [26] 14-term Arithmetic Progressions on Quartic Elliptic Curves
    MacLeod, Allan J.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2006, 9 (01)
  • [27] Elliptic curves with all quartic twists of the same root number
    Byeon, Dongho
    Han, Gyeoul
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2021, 97 (09) : 73 - 75
  • [28] Infinite families of elliptic curves over Dihedral quartic number fields
    Jeon, Daeyeol
    Kim, Chang Heon
    Lee, Yoonjin
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (01) : 115 - 122
  • [29] GENERATORS AND INTEGRAL POINTS ON ELLIPTIC CURVES ASSOCIATED WITH SIMPLEST QUARTIC FIELDS
    Duquesne, Sylvain
    Nara, Tadahisa
    Zargar, Arman Shamsi
    [J]. MATHEMATICA SLOVACA, 2020, 70 (02) : 273 - 288
  • [30] An Implementation and Evaluation of a Pairing on Elliptic Curves with Embedding Degree 14
    Song, Zihao
    Matsumura, Rikuya
    Takahashi, Yuto
    Nanjo, Yuki
    Kusaka, Takuya
    Nogami, Yasuyuki
    Matsumoto, Tsutomu
    [J]. 35TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2020), 2020, : 293 - 298