Local sublattice symmetry breaking for graphene with a centrosymmetric deformation

被引:44
作者
Schneider, M. [1 ,2 ]
Faria, D. [3 ]
Kusminskiy, S. Viola [1 ,2 ]
Sandler, N. [4 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
[3] Univ Fed Fluminense, Inst Fis, BR-24210340 Rio De Janeiro, Brazil
[4] Ohio Univ, Nanoscale & Quantum Phenomena Inst, Dept Phys & Astron, Athens, OH 45701 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.91.161407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the local density of states (LDOS) for an infinite graphene sheet with a single centrosymmetric out-of-plane deformation, in order to investigate measurable strain signatures on graphene. We focus on the regime of small deformations and show that the strain-induced pseudomagnetic field induces an imbalance of the LDOS between the two triangular graphene sublattices in the region of the deformation. Real-space imaging reveals a characteristic sixfold symmetry pattern where the sublattice symmetry is broken within each fold, consistent with experimental and tight-binding observations. The open geometry we study allows us to make use of the usual continuum model of graphene and to obtain results independent of boundary conditions. We provide an analytic perturbative expression for the contrast between the LDOS of each sublattice, showing a scaling law as a function of the amplitude and width of the deformation. We confirm our results by a numerically exact iterative scattering matrix method.
引用
收藏
页数:5
相关论文
共 24 条
[1]  
[Anonymous], COMMUNICATION
[2]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[3]   Gaussian deformations in graphene ribbons: Flowers and confinement [J].
Carrillo-Bastos, R. ;
Faria, D. ;
Latge, A. ;
Mireles, F. ;
Sandler, N. .
PHYSICAL REVIEW B, 2014, 90 (04)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices [J].
Couto, Nuno J. G. ;
Costanzo, Davide ;
Engels, Stephan ;
Ki, Dong-Keun ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Stampfer, Christoph ;
Guinea, Francisco ;
Morpurgo, Alberto F. .
PHYSICAL REVIEW X, 2014, 4 (04)
[6]   Graphene bubbles with controllable curvature [J].
Georgiou, T. ;
Britnell, L. ;
Blake, P. ;
Gorbachev, R. V. ;
Gholinia, A. ;
Geim, A. K. ;
Casiraghi, C. ;
Novoselov, K. S. .
APPLIED PHYSICS LETTERS, 2011, 99 (09)
[7]   Interplay between real and pseudomagnetic field in graphene with strain [J].
Kim, Kyung-Joong ;
Blanter, Ya M. ;
Ahn, Kang-Hun .
PHYSICAL REVIEW B, 2011, 84 (08)
[8]   Electromechanical Properties of Graphene Drumheads [J].
Klimov, Nikolai N. ;
Jung, Suyong ;
Zhu, Shuze ;
Li, Teng ;
Wright, C. Alan ;
Solares, Santiago D. ;
Newell, David B. ;
Zhitenev, Nikolai B. ;
Stroscio, Joseph A. .
SCIENCE, 2012, 336 (6088) :1557-1561
[9]  
Landau L., 1970, Theory of Elasticity Course of Theoretical Physics
[10]   Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles [J].
Levy, N. ;
Burke, S. A. ;
Meaker, K. L. ;
Panlasigui, M. ;
Zettl, A. ;
Guinea, F. ;
Castro Neto, A. H. ;
Crommie, M. F. .
SCIENCE, 2010, 329 (5991) :544-547