Enhancement of cordycepin production from Cordyceps militaris culture by epigenetic modification

被引:16
|
作者
Kunhorm, Phongsakorn [1 ]
Chueaphromsri, Phongsakorn [1 ]
Chaicharoenaudomrung, Nipha [1 ]
Noisa, Parinya [1 ]
机构
[1] Suranaree Univ Technol, Sch Biotechnol, Inst Agr Technol, Lab Cell Based Assays & Innovat, 111 Univ Ave, Nakhon Ratchasima 30000, Thailand
关键词
Cordyceps militaris; Cordycepin; Static liquid culture; Epigenetic modification; MEDICINAL MUSHROOM; GENE-EXPRESSION; SURFACE CULTURE; BIOSYNTHESIS; INHIBITOR; ADENOSINE;
D O I
10.1007/s10529-022-03241-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cordycepin (3'-deoxyadenosine) is a nucleoside analogue and biosynthesised by Cordyceps militaris, an entomopathogenic fungus. In this study, an epigenetic modifier was applied to static liquid cultures to enhance cordycepin production. C. militaris was cultured in a static liquid culture, and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was supplemented in order to modifying the epigenetic status. Gene regulatory network was explored to understand the molecular mechanisms underlying cordycepin production. 50 micromolar of VPA enhanced cordycepin production by 41.187% via the upregulation of 5'-nucleotidase, adenylate kinase, phosphorybosyltransferase, Cns1, Cns2, Cnsa3, and Cns4 of C. militaris for at least 2 days after VPA treatment. The maximum production of cordycepin was 2,835.32 +/- 34.35 mg/L in 400 mLworking volume. A scaled-up culture was established with a working volume of 10 L, which led to the slight decrease of cordycepin production. This might due to multifactorial effects, for instance limited aeration and an uneven dispersion of nutrients in the culture system. This scaled-up culture was still needed further optimization. The modification of epigenetic status by VPA significantly enhanced cordycepin production by altering key gene regulatory network of C. militaris. The strategy established in this study might be applicable to other microorganism culture in order to improving the production of bioactive compounds.
引用
收藏
页码:581 / 593
页数:13
相关论文
共 50 条
  • [21] Optimization of Solid-state Fermentation for Fruiting Body Growth and Cordycepin Production by Cordyceps militaris
    Wen, Ting-chi
    Li, Guang-rong
    Kang, Ji-chuan
    Kang, Chao
    Hyde, Kevin D.
    CHIANG MAI JOURNAL OF SCIENCE, 2014, 41 (04): : 858 - 872
  • [22] Utilization of Corncob Biochar in Cultivation Media for Cordycepin Production and Biomass of Cordyceps militaris
    Phoungthong, Khamphe
    Aiphuk, Waraporn
    Maneerat, Tharakorn
    Suwunwong, Thitipone
    Choto, Patcharanan
    Chomnunti, Putarak
    SUSTAINABILITY, 2022, 14 (15)
  • [23] Enhanced Production of Cordycepin by Solid State Fermentation of Cordyceps militaris using Additives
    Wen, Ting-Chi
    Kang, Chao
    Meng, Ze-Bing
    Qi, Yong-Bin
    Hyde, Kevin D.
    Kang, Ji-Chuan
    CHIANG MAI JOURNAL OF SCIENCE, 2016, 43 (05): : 972 - 984
  • [24] Effects of culture conditions on mycelium biomass and intracellular cordycepin production of Cordyceps militaris in natural medium
    Xie, Chunyan
    Liu, Gaixia
    Gu, Zhenxin
    Fan, Gongjian
    Zhang, Lei
    Gu, Yingjuan
    ANNALS OF MICROBIOLOGY, 2009, 59 (02) : 293 - 299
  • [25] Cultivation of Medicinal Caterpillar Fungus, Cordyceps militaris (Ascomycetes), and Production of Cordycepin Using the Spent Medium from Levan Fermentation
    Wu, Fang-Chen
    Chen, Yi-Lin
    Chang, Shu-Ming
    Shih, Ing-Lung
    INTERNATIONAL JOURNAL OF MEDICINAL MUSHROOMS, 2013, 15 (04) : 393 - 405
  • [26] Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris
    Mao, XB
    Zhong, JJ
    ENZYME AND MICROBIAL TECHNOLOGY, 2006, 38 (3-4) : 343 - 350
  • [27] Effect of the salts of deep ocean water on the production of cordycepin and adenosine of Cordyceps militaris-fermented product
    Hung, Yu-Ping
    Wang, Jyh-Jye
    Wei, Bai-Luh
    Lee, Chun-Lin
    AMB EXPRESS, 2015, 5
  • [28] Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis
    Wongsa, Boontariga
    Raethong, Nachon
    Chumnanpuen, Pramote
    Wong-ekkabut, Jirasak
    Laoteng, Kobkul
    Vongsangnak, Wanwipa
    GENOMICS, 2020, 112 (01) : 629 - 636
  • [29] Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus
    Zheng, Zhuang-li
    Qiu, Xue-hong
    Han, Ri-chou
    MYCOBIOLOGY, 2015, 43 (01) : 37 - 42
  • [30] Adenosine Deaminase Inhibitory Activity of Medicinal Plants: Boost the Production of Cordycepin in Cordyceps militaris
    Turk, Ayman
    Lee, Solip
    Yeon, Sang Won
    Ryu, Se Hwan
    Han, Yoo Kyong
    Kim, Young Jun
    Ko, Sung Min
    Kim, Beom Seok
    Hwang, Bang Yeon
    Lee, Ki Yong
    Lee, Mi Kyeong
    ANTIOXIDANTS, 2023, 12 (06)