A Memory Efficient Parallel All-Pairs Computation Framework: Computation - Communication Overlap
被引:1
|
作者:
Yeleswarapu, Venkata Kasi Viswanath
论文数: 0引用数: 0
h-index: 0
机构:
Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50010 USAIowa State Univ, Dept Elect & Comp Engn, Ames, IA 50010 USA
Yeleswarapu, Venkata Kasi Viswanath
[1
]
Somani, Arun K.
论文数: 0引用数: 0
h-index: 0
机构:
Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50010 USAIowa State Univ, Dept Elect & Comp Engn, Ames, IA 50010 USA
Somani, Arun K.
[1
]
机构:
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50010 USA
来源:
PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I
|
2018年
/
10777卷
基金:
美国国家科学基金会;
关键词:
Communication - computation overlap;
High performance computing;
All-Pairs problems;
Parallel computing;
MPI;
D O I:
10.1007/978-3-319-78024-5_39
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
All-Pairs problems require each data element in a set of N data elements to be paired with every other data element for specific computation using the two data elements. Our framework aims to address recurring problems of scalability, distributing equal work load to all nodes and by reducing memory footprint. We reduce memory footprint of All-Pairs problems, by reducing memory requirement from N/root P to 3N/P. A bio-informatics application is implemented to demonstrate the scalability ranging up to 512 cores for the data set we experimented, redundancy management, and speed up performance of the framework.