InAs quantum dots and quantum wells grown on stacking-fault controlled InP nanowires with wurtzite crystal structure

被引:28
|
作者
Kawaguchi, Kenichi [1 ,2 ]
Heurlin, Magnus [1 ]
Lindgren, David [1 ]
Borgstrom, Magnus T. [1 ]
Ek, Martin [1 ]
Samuelson, Lars [1 ]
机构
[1] Lund Univ, S-22100 Lund, Sweden
[2] Fujitsu Labs Ltd, Atsugi, Kanagawa 2430197, Japan
基金
瑞典研究理事会;
关键词
III-V semiconductors; indium compounds; MOCVD; photoluminescence; semiconductor growth; semiconductor quantum dots; semiconductor quantum wells; stacking faults; vapour phase epitaxial growth; VAPOR-PHASE EPITAXY; SELF-ASSEMBLED INAS; NANOSTRUCTURES; SUPERLATTICES; INP(001);
D O I
10.1063/1.3646386
中图分类号
O59 [应用物理学];
学科分类号
摘要
Heteroepitaxial growth of InAs was investigated on sidewalls of InP nanowires (NWs) using metal-organic vapor phase epitaxy. InAs quantum wells (QWs) with smooth surface were formed on the InP NWs having perfect wurtzite phase structure. On the other hand, InAs quantum dots (QDs) were formed on wurtzite InP NWs purposely introduced with stacking-fault segments. Photoluminescence from single NWs attributed to both QWs and QDs was observed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3646386]
引用
收藏
页数:3
相关论文
共 49 条
  • [31] Polarization Dependence of Photoluminescence from InAs Quantum Dots Grown on InP(311)B Substrates Using Digital Embedding Method
    Akahane, Kouichi
    Yamamoto, Hiroyuki
    Matsumoto, Atsushi
    Umezawa, Toshimasa
    Sotobayashi, Hideyuki
    Yamamoto, Naokatsu
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (08):
  • [32] Effect of Cap Thickness on InAs/InP Quantum Dots Grown by Droplet Epitaxy in Metal-Organic Vapor Phase Epitaxy
    Sala, Elisa M.
    Godsland, Max
    Trapalis, Aristotelis
    Heffernan, Jon
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (09):
  • [33] Effect of thin GaAs interface layer on InAs quantum dots grown on InGaAs/InP using metalorganic vapor phase epitaxy
    Qiu, YM
    Uhl, D
    JOURNAL OF CRYSTAL GROWTH, 2003, 257 (3-4) : 225 - 230
  • [34] Effects of rapid thermal annealing on telecom C-band InAs quantum dots on InP (100) grown by droplet epitaxy
    Chan, Chak Lam
    Sala, Elisa Maddalena
    Clarke, Edmund
    Heffernan, Jon
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (02)
  • [35] Influences of Strain and Phase Separation on the Alignment Characteristics of Five-Stacked InAs/InAlGaAs Quantum Dots Grown on InP(001)
    Kim, Jin Soo
    Lee, Cheul-Ro
    Lee, In Hwan
    Leem, Jae-Young
    Lee, Joo In
    Kim, Jong Su
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (04) : 1644 - 1649
  • [36] Time-resolved mid-infrared photoluminescence from highly strained InAs/InGaAs quantum wells grown on InP substrates
    Sumikura, Hisashi
    Sato, Tomonari
    Shinya, Akihiko
    Notomi, Masaya
    APPLIED PHYSICS EXPRESS, 2021, 14 (03)
  • [37] Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide
    Haffouz, Sofiane
    Zeuner, Katharina D.
    Dalacu, Dan
    Poole, Philip J.
    Lapointe, Jean
    Poitras, Daniel
    Mnaymneh, Khaled
    Wu, Xiaohua
    Couillard, Martin
    Korkusinski, Marek
    Scholl, Eva
    Jons, Klaus D.
    Zwiller, Valery
    Williams, Robin L.
    NANO LETTERS, 2018, 18 (05) : 3047 - 3052
  • [38] Effect of thin GaAs tensile-strained layer on InAs quantum dots on InP (001) substrate grown by LP-MOVPE
    Jin, Z
    Yang, SR
    Liu, BB
    Li, MT
    Wang, XQ
    Li, ZT
    Du, GT
    Liu, SY
    OPTICAL MATERIALS, 2000, 14 (03) : 211 - 215
  • [39] Optical transitions and carrier dynamics in self-organized InAs quantum dots grown on In0.52Al0.48As/InP(001)
    Salem, B
    Bremond, G
    Guillot, G
    Gendry, M
    Jbeli, A
    Marie, X
    Amand, T
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 31 (02) : 232 - 234
  • [40] New growth mechanism of InAs-GaSb core-shell nanowires with polygonal triangular pyramids and quantum dots grown by MOCVD
    Wang, Xiaoye
    Yang, Xiaoguang
    Yang, Tao
    VACUUM, 2024, 225