On the wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order

被引:14
作者
D'Ancona, P
Kinoshita, T
机构
[1] Univ Roma La Sapienza, I-00185 Rome, Italy
[2] Univ Tsukuba, Math Inst, Tsukuba, Ibaraki 3058571, Japan
关键词
weakly hyperbolic Cauchy problem; higher order equations; Gevrey classes;
D O I
10.1002/mana.200310299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the wellposedness in the Gevrey classes G(8) and in C-infinity of the Cauchy problem for weakly hyperbolic equations of higher order. In this paper we shall give a new approach to the case that the characteristic roots oscillate rapidly and vanish at an infinite number of points. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1147 / 1162
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1983, ANN SCUOLA NORM-SCI
[2]  
Bronshtein M. D., 1982, T MOSCOW MATH SOC, V1, P87
[3]  
CICOGNANI M, 1988, ITAL J PURE APPL MAT, V4, P73
[4]   On the Gevrey well posedness of the Cauchy problem for weakly hyperbolic equations of higher order [J].
Colombini, F ;
Kinoshita, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :394-419
[5]   Well-posedness in C∞ for some weakly hyperbolic equations [J].
Colombini, F ;
Orrú, N .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (03) :399-420
[6]  
Colombini F., 1979, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V6, P511
[7]  
COLOMBINI F, IN PRESS WELL POSEDN
[8]  
D'Ancona P., 1994, REND SEMIN MAT U PAD, V91, P65
[9]   GEVREY WELL-POSEDNESS OF AN ABSTRACT CAUCHY-PROBLEM OF WEAKLY HYPERBOLIC TYPE [J].
DANCONA, P .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1988, 24 (03) :433-449
[10]  
Gramchev T, 1999, BOLL UNIONE MAT ITAL, V2B, P65