Thermal Diffusivity and Conductivity of Fe3O4 Scale Provided by Oxidation of Iron

被引:5
|
作者
Li, Mu [1 ]
Akoshima, Megumi [1 ]
Endo, Rie [2 ]
Ueda, Mitsutoshi [2 ]
Tanei, Hiroshi [3 ]
Susa, Masahiro [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Mat & Chem Measurement, Tsukuba, Ibaraki 3058586, Japan
[2] Tokyo Inst Technol, Dept Mat Sci & Engn, Meguro Ku, Tokyo 1528552, Japan
[3] Nippon Steel Corp Ltd, Proc Res Labs, 20-1 Shintomi, Futtsu, Chiba 2938511, Japan
关键词
iron oxide scale; Fe3O4; thermal diffusivity; thermal conductivity; effective thermal conductivity; laser flash method; TEMPERATURE-DEPENDENCE; FEO SCALE; OXIDE;
D O I
10.2355/isijinternational.ISIJINT-2021-326
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The thermal diffusivity and conductivity of Fe3O4 scale have been determined with the laser flash method. Fe3O4 scale was provided by oxidation of iron plates at 823 K in Ar containing 0.84%H-2 and 15.6%H2O. The scale was characterized by scanning electron microscopy and X-ray diffraction analysis for high temperature use to identify the phase of the scale. The thermal diffusivity and conductivity derived for the Fe3O4 scale decrease from 1.1 x 10(-6) m(2)s(-1) to 4.1 x 10(-7) m(2)s(-1) and from 3.5 Wm(-1)K(-1) to 1.7 Wm(-1)K(-1), respectively, with increasing temperature from room temperature to 676 K. The effective thermal conductivity of iron oxide scale with Fe3O4 has been evaluated assuming that Fe3O4 occupies 30% of the total scale thickness, suggesting the impact of the presence of Fe3O4 is about ten percent.
引用
收藏
页码:275 / 277
页数:3
相关论文
共 50 条
  • [31] Synthesis and microwave absorption properties of sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge
    Qi, Qing
    Huang, Yumin
    Xu, Mingzhen
    Lei, Xuefeng
    Liu, Xiaobo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (20) : 15043 - 15049
  • [32] THERMAL-DIFFUSIVITY, HEAT-CAPACITY AND THERMAL-CONDUCTIVITY IN AL2O3-NI COMPOSITE
    LIU, DM
    TUAN, WH
    CHIU, CC
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 31 (03): : 287 - 291
  • [33] Magnetically disordered phase in epitaxial iron-deficient Fe3O4 thin films
    Moyer, J. A.
    Lee, S.
    Schiffer, P.
    Martin, L. W.
    PHYSICAL REVIEW B, 2015, 91 (06):
  • [34] The Fe3O4 origin of the "Biphase" reconstruction on α-Fe2O3(0001)
    Lanier, Courtney H.
    Chiaramonti, Ann N.
    Marks, Laurence D.
    Poeppelmeier, Kenneth R.
    SURFACE SCIENCE, 2009, 603 (16) : 2574 - 2579
  • [35] Preparation and Thermal Conductivity of Epoxy Resin/Graphene-Fe3O4 Composites
    Wu, Zhong
    Chen, Jingyun
    Li, Qifeng
    Xia, Da-Hai
    Deng, Yida
    Zhang, Yiwen
    Qin, Zhenbo
    MATERIALS, 2021, 14 (08)
  • [36] PHOTOACOUSTICS AND MAGNETIC STUDIES OF Fe3O4 NANOPARTICLES
    Rajkumar, N.
    Umamahaeswari, D.
    Ramachandran, K.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2010, 9 (03) : 243 - 250
  • [37] Synthesis of Fe3O4 nanoparticles on the surface of graphene
    Soloveva, Anastasiya Yu.
    Ioni, Yulia V.
    Gubin, Sergey P.
    MENDELEEV COMMUNICATIONS, 2016, 26 (01) : 38 - 39
  • [38] Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network
    Afrand, Masoud
    Toghraie, Davood
    Sina, Nima
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 75 : 262 - 269
  • [39] Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material
    Kim, Kiho
    Ju, Hyun
    Kim, Jooheon
    POLYMER, 2016, 91 : 74 - 80
  • [40] INVESTIGATION OF PHOTOTHERMAL CHARACTERISTICS OF Fe3O4 NANOFLUID
    Ham, Jeonggyun
    Boldoo, Tsogtbilegt
    Cho, Honghyun
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,