Construction of TiO2 nanotube clusters on Ti mesh for immobilizing Sb-SnO2 to boost electrocatalytic phenol degradation

被引:73
作者
Huang, Linlin [1 ]
Li, Da [2 ]
Liu, Junfeng [1 ]
Yang, Lisha [1 ]
Dai, Changchao [1 ]
Ren, Nanqi [1 ]
Feng, Yujie [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
关键词
Mesh Ti substrate; TiO2; nanotubes; Sb doped SnO2; Electrochemical oxidation of phenol; Hydroxyl radicals; ADVANCED OXIDATION PROCESSES; BORON-DOPED DIAMOND; ELECTROCHEMICAL OXIDATION; WASTE-WATER; ANODIC-OXIDATION; HIGH-PERFORMANCE; ORGANIC POLLUTANTS; HYDROXYL RADICALS; AQUEOUS-MEDIUM; ELECTRODE;
D O I
10.1016/j.jhazmat.2020.122329
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An efficient Sb-doped SnO2 electrode featuring superior electrocatalytic characteristic and long stability was constructed by adopting clustered TiO2 nanotubes-covered Ti mesh as substrate (M-TNTs-SnO2). Compared with the electrodes prepared with mere Ti mesh or Ti plate grew with TiO2 nanotube, the M-TNTs-SnO2 exhibited higher TOC removal (99.97 %) and mineralization current efficiency (44.0 %), and longer accelerated service lifetime of 105 h for electrochemical degradation of phenol. The enhanced performance was mainly ascribed to the introduction of mutually self-supported TiO2 nanotube clusters in different orientations. Such unique structure not only favored a compact and smooth surface of catalyst layer which improved the stability of electrode by reinforcing the binding force between substrate and catalyst layer, but also increased the loading capacity for catalysts, leading to 1.5-2.2 times higher of center dot OH generation, the main active species for indirect electrochemical oxidation of phenol. Meanwhile, the transverse electron transfer from TiO2 nanotube to catalyst layer was possibly achieved to further prompt the generation of center dot OH. This study may provide a feasible option to design of efficient electrodes for electrocatalytic degradation of organic pollutants.
引用
收藏
页数:10
相关论文
共 59 条
[11]   Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode [J].
Chen, Yong ;
Li, Hongyi ;
Liu, Weijing ;
Tu, Yong ;
Zhang, Yaohui ;
Han, Weiqing ;
Wang, Lianjun .
CHEMOSPHERE, 2014, 113 :48-55
[12]   Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition [J].
Chen, Yong ;
Hong, Lei ;
Xue, Hongmin ;
Han, Weiqing ;
Wang, Lianjun ;
Sun, Xiuyun ;
Li, Jiansheng .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 648 (02) :119-127
[13]   Electrocatalytic reduction of diethyl oximinomalonate at a Ti/nanoporous TiO2 electrode [J].
Chu, Daobao ;
Xu, Mai ;
Lu, Jia ;
Zheng, Peng ;
Qin, Guoxu ;
Yuan, Ximei .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (02) :350-353
[14]   ANODIC-OXIDATION OF PHENOL FOR WASTE-WATER TREATMENT [J].
COMNINELLIS, C ;
PULGARIN, C .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (08) :703-708
[15]  
COMNINELLIS C, 1993, J APPL ELECTROCHEM, V23, P108
[16]   ELECTROCATALYSIS IN THE ELECTROCHEMICAL CONVERSION/COMBUSTION OF ORGANIC POLLUTANTS FOR WASTE-WATER TREATMENT [J].
COMNINELLIS, C .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1857-1862
[17]   Advanced oxidation processes for water treatment: advances and trends for R&D [J].
Comninellis, Christos ;
Kapalka, Agnieszka ;
Malato, Sixto ;
Parsons, Simon A. ;
Poulios, Loannis ;
Mantzavinos, Dionissios .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2008, 83 (06) :769-776
[18]   Physicochemical properties of SnO2-Sb2O5 films prepared by the spray pyrolysis technique [J].
CorreaLozano, B ;
Comninellis, C ;
DeBattisti, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :203-209
[19]   Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time [J].
Cui, Xiao ;
Zhao, Guohua ;
Lei, Yanzhu ;
Li, Hongxu ;
Li, Peiqiang ;
Liu, Meichuan .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 113 (01) :314-321
[20]   Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes [J].
Cui, Yu-Hong ;
Feng, Yu-Jie ;
Liu, Zheng-Qian .
ELECTROCHIMICA ACTA, 2009, 54 (21) :4903-4909