Generalized stack permutations

被引:9
作者
Atkinson, MD [1 ]
机构
[1] Sch Math & Computat Sci, St Andrews KY16 9SS, Fife, Scotland
关键词
D O I
10.1017/S096354839800354X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Stacks which allow elements to be pushed into any of the top r positions and popped from any of the top s positions are studied. An asymptotic formula for the number u(n) of permutations of length n sortable by such a stack is found in the cases r = 1 or s = 1. This formula is found from the generating function of u(n). The sortable permutations are characterized if r = 1 or s = 1 or r = s = 2 by a forbidden subsequence condition.
引用
收藏
页码:239 / 246
页数:8
相关论文
共 9 条
[1]  
ATKINSON MD, 1992, TR210 CARL U SCH COM
[2]  
BOSE P, 1993, LECT NOTES COMPUTER, V709, P200
[3]  
KEZDY AE, 1996, J COMB THEORY, V74, P353
[4]  
KNUTH DE, 1973, FUNDAMENTAL ALGORITH, V1
[5]  
PRATT VR, 1973, P ACM S THEOR COMP, V5, P268
[6]  
Simion R., 1985, European J. Combin., V6, P383, DOI 10.1016/S0195-6698(85)80052-4
[7]   FORBIDDEN SUBSEQUENCES [J].
STANKOVA, ZE .
DISCRETE MATHEMATICS, 1994, 132 (1-3) :291-316
[8]   SORTING USING NETWORKS OF QUEUES AND STACKS [J].
TARJAN, R .
JOURNAL OF THE ACM, 1972, 19 (02) :341-&
[9]   GENERATING TREES AND THE CATALAN AND SCHRODER NUMBERS [J].
WEST, J .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :247-262