Fresh Noncultured Endothelial Progenitor Cells Improve Neonatal Lung Hyperoxia-Induced Alveolar Injury

被引:5
|
作者
Firsova, Alexandra B. [1 ]
Bird, Daniel [1 ]
Abebe, Degu [1 ]
Ng, Judy [1 ]
Mollard, Richard [1 ,2 ]
Cole, Timothy J. [1 ]
机构
[1] Monash Univ, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Dept Vet & Agr Sci, Parkville, Vic 3052, Australia
基金
澳大利亚国家健康与医学研究理事会;
关键词
Hyperoxia; Cell therapy; Endothelial progenitor cells; Bone marrow; Lung injury; Alveolarization; Fresh cells; Cultured cells; Side effects; MESENCHYMAL STEM-CELLS; BONE-MARROW; GROWTH; REPAIR; CONTRIBUTE; MODEL; TRANSPLANTATION; VASCULOGENESIS; ROLES;
D O I
10.1002/sctm.17-0093
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Treatment of preterm human infants with high oxygen can result in disrupted lung alveolar and vascular development. Local or systemic administration of endothelial progenitor cells (EPCs) is reported to remedy such disruption in animal models. In this study, the effects of both fresh (enriched for KDR) and cultured bone marrow (BM)-derived cell populations with EPC characteristics were examined following hyperoxia in neonatal mouse lungs. Intraperitoneal injection of fresh EPCs into five-day-old mice treated with 90% oxygen resulted in full recovery of hyperoxia-induced alveolar disruption by 56 days of age. Partial recovery in septal number following hyperoxia was observed following injection of short-term cultured EPCs, yet aberrant tissue growths appeared following injection of long-term cultured cells. Fresh and long-term cultured cells had no impact on blood vessel development. Short-term cultured cells increased blood vessel number in normoxic and hyperoxic mice by 28 days but had no impact on day 56. Injection of fresh EPCs into normoxic mice significantly reduced alveolarization compared with phosphate buffered saline-injected normoxic controls. These results indicate that fresh BM EPCs have a higher and safer corrective profile in a hyperoxia-induced lung injury model compared with cultured BM EPCs but may be detrimental to the normoxic lung. The appearance of aberrant tissue growths and other side effects following injection of cultured EPCs warrants further investigation.
引用
收藏
页码:2094 / 2105
页数:12
相关论文
共 50 条
  • [1] Does Hypercapnia Ameliorate Hyperoxia-Induced Lung Injury in Neonatal Rats?
    MacCarrick, Matthew J.
    Torbati, Dan
    Kimura, Dai
    Raszynski, Andre
    Zeng, Wenjing
    Totapally, Balagangadhar R.
    LUNG, 2010, 188 (03) : 235 - 240
  • [2] Combined iNO and endothelial progenitor cells improve lung alveolar and vascular structure in neonatal rats exposed to prolonged hyperoxia
    Lu, Aizhen
    Sun, Bo
    Qian, Liling
    PEDIATRIC RESEARCH, 2015, 77 (06) : 784 - 792
  • [3] Alveolar cell death in hyperoxia-induced lung injury
    Pagano, A
    Barazzone-Argiroffo, C
    APOPTOSIS: FROM SIGNALING PATHWAYS TO THERAPEUTIC TOOLS, 2003, 1010 : 405 - 416
  • [4] Human amnion epithelial cells modulate hyperoxia-induced neonatal lung injury in mice
    Vosdoganes, Patricia
    Lim, Rebecca
    Koulaeva, Eugenia
    Chan, Siow Teng
    Acharya, Rutu
    Moss, Timothy J. M.
    Wallace, Euan M.
    CYTOTHERAPY, 2013, 15 (08) : 1021 - 1029
  • [5] Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury
    Shafa, Mehdi
    Ionescu, Lavinia Iuliana
    Vadivel, Arul
    Collins, Jennifer J. P.
    Xu, Liqun
    Zhong, Shumei
    Kang, Martin
    De Caen, Genevieve
    Daneshmand, Manijeh
    Shi, Jenny
    Fu, Katherine Z.
    Qi, Andrew
    Wang, Ying
    Ellis, James
    Stanford, William L.
    Thebaud, Bernard
    CYTOTHERAPY, 2018, 20 (01) : 108 - 125
  • [6] Mast cells and exosomes in hyperoxia-induced neonatal lung disease
    Veerappan, A.
    Thompson, M.
    Savage, A. R.
    Silverman, M. L.
    Chan, W. S.
    Sung, B.
    Summers, B.
    Montelione, K. C.
    Benedict, P.
    Groh, B.
    Vicencio, A. G.
    Peinado, H.
    Worgall, S.
    Silver, R. B.
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2016, 310 (11) : L1218 - L1232
  • [7] Does Hypercapnia Ameliorate Hyperoxia-Induced Lung Injury in Neonatal Rats?
    Matthew J. MacCarrick
    Dan Torbati
    Dai Kimura
    Andre Raszynski
    Wenjing Zeng
    Balagangadhar R. Totapally
    Lung, 2010, 188 : 235 - 240
  • [8] Activin A contributes to the development of hyperoxia-induced lung injury in neonatal mice
    Lim, Rebecca
    Muljadi, Ruth
    Koulaeva, Eugenia
    Vosdoganes, Patricia
    Chan, Siow Teng
    Acharya, Rutu
    Gurusinghe, Seshini
    Ritvos, Olli
    Pasternack, Arja
    Wallace, Euan M.
    PEDIATRIC RESEARCH, 2015, 77 (06) : 749 - 756
  • [9] Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuate Hyperoxia-Induced Lung Injury in Neonatal Rats
    Chang, Yun Sil
    Oh, Wonil
    Choi, Soo Jin
    Sung, Dong Kyung
    Kim, Soo Yoon
    Choi, Eun Yang
    Kang, Saem
    Jin, Hye Jin
    Yang, Yoon Sun
    Park, Won Soon
    CELL TRANSPLANTATION, 2009, 18 (08) : 869 - 886
  • [10] CXCR4 Blockade Attenuates Hyperoxia-Induced Lung Injury in Neonatal Rats
    Drummond, Shelley
    Ramachandran, Shalini
    Torres, Eneida
    Huang, Jian
    Hehre, Dorothy
    Suguihara, Cleide
    Young, Karen C.
    NEONATOLOGY, 2015, 107 (04) : 304 - 311