A Novel Spectral Method for Burgers Equation on The Real Line

被引:3
作者
Jiao, Yujian [1 ,2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
关键词
Burger equation on the real line; spectral method; nonlinear problem; generalised Hermite function; FINITE-ELEMENT; COLLOCATION METHOD; LEGENDRE; APPROXIMATIONS; DECOMPOSITION;
D O I
10.4208/eajam.201119.070220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spectral method for the Burgers equation on the whole real line based on generalised Hermite functions is proposed. The generalised stability and convergence of the method are proved. Numerical results confirm the theoretical findings and demonstrate the efficiency of the algorithm.
引用
收藏
页码:532 / 548
页数:17
相关论文
共 45 条
[1]   Group theoretic methods applied to Burgers' equation [J].
Abd-el-Malek, MB ;
El-Mansi, SMA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) :1-12
[2]   CONTINUOUS AND DISCONTINUOUS FINITE-ELEMENT METHODS FOR BURGERS-EQUATION [J].
ARMINJON, P ;
BEAUCHAMP, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 25 (01) :65-84
[3]   FINITE-ELEMENT METHOD FOR BURGERS EQUATION IN HYDRODYNAMICS [J].
ARMINJON, P ;
BEAUCHAMP, C .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (03) :415-428
[4]   A fully implicit finite-difference scheme for two-dimensional Burgers' equations [J].
Bahadir, AR .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 137 (01) :131-137
[5]   Dynamics in spectral solutions of Burgers equation [J].
Basto, Mario ;
Semiao, Viriato ;
Calheiros, Francisco .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :296-304
[6]  
Bateman H., 1915, Mon. Weather Rev., V43, P163
[7]   Burgers turbulence [J].
Bec, Jeremie ;
Khanin, Konstantin .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 447 (1-2) :1-66
[8]   Velocity fluctuations in forced Burgers turbulence [J].
Bouchaud, JP ;
Mezard, M .
PHYSICAL REVIEW E, 1996, 54 (05) :5116-5121
[9]  
Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI DOI 10.1007/978-94-010-1745-9
[10]  
Burgers JM, 1948, Advances in Applied Mechanics, V1, P171, DOI 10.1016/S0065-2156(08)70100-5