On the spectrum and stiffness of an elastic body with surface stresses

被引:34
作者
Altenbach, Holm [1 ]
Eremeyev, Victor A. [1 ,2 ,3 ]
Lebedev, Leonid P. [4 ]
机构
[1] Univ Halle Wittenberg, Zentrum Ingenieurwissensch, Lehrstuhl Tech Mech, D-06099 Halle, Saale, Germany
[2] RASci, S Sci Ctr, Rostov Na Donu 344090, Russia
[3] S Fed Univ, Rostov Na Donu 344090, Russia
[4] Univ Nacl Colombia, Bogota, Colombia
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2011年 / 91卷 / 09期
关键词
Surface stresses; eigenfrequencies; energy spaces of Sobolev's type; Rayleigh variational principle; Courant's maximum-minimum principle; VIBRATION; TENSION;
D O I
10.1002/zamm.201000214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical investigation of the eigenvalue problems for elastic bodies including surface stresses is presented. Weak setup of the problems is based on the Rayleigh variational principle. Certain spectral properties are established for the problems under consideration. In particular, bounds for the eigenfrequencies of an elastic body with surface stresses are presented. These bounds demonstrate increases in both the rigidity of the body and of the eigenfrequencies over those of the body with surface stresses neglected. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:699 / 710
页数:12
相关论文
共 30 条
[1]  
Adams R.A., 2003, Sobolev spaces, V140
[2]   Linear Theory of Shells Taking into Account Surface Stresses [J].
Altenbach, H. ;
Eremeyev, V. A. ;
Morozov, N. F. .
DOKLADY PHYSICS, 2009, 54 (12) :531-535
[3]  
[Anonymous], 2010, Tensor analysis with applications in mechanics
[4]  
[Anonymous], 1972, MECH SOLID 2
[5]  
[Anonymous], Z ANGEW MATH MECH
[6]  
[Anonymous], SOLID MECH ITS APPL
[7]  
Ciarlet PG., 1988, Mathematical Elasticity
[8]  
Courant R., 1989, Methods of mathematical physics, V1
[9]   Nanoporous materials can be made stiffer than non-porous counterparts by surface modification [J].
Duan, H. L. ;
Wang, J. ;
Karihaloo, B. L. ;
Huang, Zt. .
ACTA MATERIALIA, 2006, 54 (11) :2983-2990
[10]   Theory of Elasticity at the Nanoscale [J].
Duan, H. L. ;
Wang, J. ;
Karihaloo, B. L. .
ADVANCES IN APPLIED MECHANICS, VOL 42, 2009, 42 :1-68