Ruin probabilities of small noise jump-diffusions with heavy tails

被引:2
|
作者
Pavlyukevich, Ilya [1 ]
机构
[1] Humboldt Univ, Dept Math, D-12489 Berlin, Germany
关键词
Levy process; heavy tails; regular variation; first exit; jump-diffusion; ruin probability; small;
D O I
10.1002/asmb.696
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let X-epsilon(x) be a solution of a stochastic differential equation dX(t)(epsilon)=f (X-t(epsilon))dt+epsilon dL(t), X-0(epsilon)(x)=x>0, t is an element of [0, 1], where L is a Levy process with heavy tails. In the limit of the scale parameter epsilon down arrow 0 we determine the finite horizon ruin probability P(inf(t is an element of)[0, 1] X-t(epsilon)(x) <0). Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:65 / 82
页数:18
相关论文
共 50 条
  • [1] Threshold estimation for jump-diffusions under small noise asymptotics
    Kobayashi, Mitsuki
    Shimizu, Yasutaka
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2023, 26 (02) : 361 - 411
  • [2] Threshold estimation for jump-diffusions under small noise asymptotics
    Mitsuki Kobayashi
    Yasutaka Shimizu
    Statistical Inference for Stochastic Processes, 2023, 26 : 361 - 411
  • [3] A PDE approach to jump-diffusions
    Carr, Peter
    Cousot, Laurent
    QUANTITATIVE FINANCE, 2011, 11 (01) : 33 - 52
  • [4] Nonlinear filtering for jump-diffusions
    Poklukar, Darja Rupnik
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (02) : 558 - 567
  • [5] Estimating functions for jump-diffusions
    Jakobsen, Nina Munkholt
    Sorensen, Michael
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3282 - 3318
  • [6] Stochastic Flows and Jump-Diffusions
    Siu, Tak Kuen
    QUANTITATIVE FINANCE, 2020, 20 (06) : 895 - 897
  • [7] Exact Simulation Problems for Jump-Diffusions
    Goncalves, Flavio B.
    Roberts, Gareth O.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (04) : 907 - 930
  • [8] Exact Simulation Problems for Jump-Diffusions
    Flávio B. Gonçalves
    Gareth O. Roberts
    Methodology and Computing in Applied Probability, 2014, 16 : 907 - 930
  • [9] Multifrequency jump-diffusions: An equilibrium approach
    Calvet, Laurent E.
    Fisher, Adlai J.
    JOURNAL OF MATHEMATICAL ECONOMICS, 2008, 44 (02) : 207 - 226
  • [10] UNBIASED SIMULATION ESTIMATORS FOR JUMP-DIFFUSIONS
    Chen, Guanting
    Shkolnik, Alexander
    Giesecke, Kay
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 890 - 901