Branes in the GL(1|1) WZNW model

被引:35
作者
Creutzig, T. [1 ]
Quella, T. [2 ]
Schomerus, V. [1 ]
机构
[1] DESY Theory Grp, D-22603 Hamburg, Germany
[2] Univ Amsterdam, KdV Inst Math, NL-1018 TV Amsterdam, Netherlands
关键词
supergroup WZNW models; D-branes; logarithmic conformal; field theory;
D O I
10.1016/j.nuclphysb.2007.09.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We initiate a systematic study of boundary conditions in conformal field theories with target space supersymmetry. The WZNW model on GL(1 vertical bar 1) is used as a prototypical example for which we find the complete set of maximally symmetric branes. This includes a unique brane of maximal super-dimension 2 vertical bar 2, a 2-parameter family of branes with super-dimension 0 vertical bar 2 and an infinite set of fully localized branes possessing a single modulus. Members of the latter family can only exist along certain lines on the bosonic base, much like fractional branes at orbifold singularities. Our results establish that all essential algebraic features of Cardy-type boundary theories carry over to the non-rational logarithmic WZNW model on GL(1 vertical bar 1). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 283
页数:27
相关论文
共 54 条
[1]  
Alekseev AY, 1999, J HIGH ENERGY PHYS
[2]  
Alekseev AY, 1999, PHYS REV D, V60, DOI 10.1103/PhysRevD.60.061901
[3]  
[Anonymous], 1999, JHEP
[4]   Superstring theory on AdS2 x S2 as a coset supermanifold [J].
Berkovits, N ;
Bershadsky, M ;
Hauer, T ;
Zhukov, S ;
Zwiebach, B .
NUCLEAR PHYSICS B, 2000, 567 (1-2) :61-86
[5]  
BERNARD D, HEPTH9509137
[6]   PSL(n|n) sigma model as a conformal field theory [J].
Bershadsky, M ;
Zhukov, S ;
Vaintrob, A .
NUCLEAR PHYSICS B, 1999, 559 (1-2) :205-234
[7]   Towards a field theory of the plateau transitions in the integer quantum Hall effect [J].
Bhaseen, MJ ;
Kogan, II ;
Soloviev, OA ;
Taniguchi, N ;
Tsvelik, AM .
NUCLEAR PHYSICS B, 2000, 580 (03) :688-720
[8]  
Birke Lothar, 1999, ADV THEOR MATH PHYS, V3, P671, DOI [10.4310/ATMP.1999.v3.n3.a8, DOI 10.4310/ATMP.1999.V3.N3.A8]
[9]   Boundary states and symplectic fermions [J].
Bredthauer, A .
PHYSICS LETTERS B, 2003, 551 (3-4) :378-386
[10]   Boundary states in c=-2 logarithmic conformal field theory [J].
Bredthauer, A ;
Flohr, M .
NUCLEAR PHYSICS B, 2002, 639 (03) :450-470