Properties of minimally t-toughgraphs

被引:8
作者
Katona, Gyula Y. [1 ,2 ]
Soltesz, Daniel [1 ]
Varga, Kitti [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, Hungary
[2] MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
关键词
Minimally t-tough; Toughness; Claw-free graph; Embedded subgraph; GRAPHS;
D O I
10.1016/j.disc.2017.08.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is minimally t-tough if the toughness of G is t and the deletion of any edge from G decreases the toughness. Kriesell conjectured that for every minimally 1-tough graph the minimum degree delta(G) = 2. We show that in every minimally 1-tough graph delta(G) <= n/3 + 1. We also prove that every minimally 1-tough, claw-free graph is a cycle. On the other hand, we show that for every positive rational number t any graph can be embedded as an induced subgraph into a minimally t-tough graph. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 231
页数:11
相关论文
共 7 条
[1]   ON THE COMPLEXITY OF RECOGNIZING TOUGH GRAPHS [J].
BAUER, D ;
MORGANA, A ;
SCHMEICHEL, E .
DISCRETE MATHEMATICS, 1994, 124 (1-3) :13-17
[2]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[3]   A REMARK ON HAMILTONIAN CYCLES [J].
HAGGKVIST, R ;
NICOGHOSSIAN, GG .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (01) :118-120
[4]  
Kaiser T., PROBL WORKSH DOM CYC
[5]  
Lovasz L., 2007, Combinatorial Problems and Exercises
[6]   PROPERTY OF ATOMS OF FINITE GRAPHS [J].
MADER, W .
ARCHIV DER MATHEMATIK, 1971, 22 (03) :333-&
[7]   HAMILTONIAN RESULTS IN K1,3 FREE GRAPHS [J].
MATTHEWS, MM ;
SUMNER, DP .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :139-146