Limit cycles bifurcating from periodic orbits near a centre and a homoclinic loop with a nilpotent singularity of Hamiltonian systems

被引:11
作者
Wei, Lijun [1 ]
Zhang, Xiang [2 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
关键词
limit cycle bifurcation; homoclinic loop; nilpotent singularity; the first order Melnikov function; ABELIAN-INTEGRALS; CUSPIDAL LOOP; NUMBER; ZEROS; DEGREE-4; HOPF; PERTURBATIONS; SADDLE;
D O I
10.1088/1361-6544/ab7635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a planar analytic near-Hamiltonian system, whose unperturbed system has a family of periodic orbits filling a period annulus with the inner boundary an elementary centre and the outer boundary a homoclinic loop through a nilpotent singularity of arbitrary order, we characterize the coefficients of the terms with degree greater than or equal to 2 in the expansion of the first order Melnikov function near the homoclinic loop. Based on these expression of the coefficients, we discuss the limit cycle bifurcations and obtain more number of limit cycles which bifurcate from the family of periodic orbits near the homoclinic loop and the centre. Finally, as an application of our main results we study limit cycle bifurcation of a (m + 1)th order Lienard system with an elliptic Hamiltonian function of degree 4, and improve the lower bound of the maximal number of the isolated zeros of the related Abelian integral for any m >= 4.
引用
收藏
页码:2723 / 2754
页数:32
相关论文
共 41 条
[1]  
[Anonymous], 1902, Bulletins of the American Mathematical Society, DOI DOI 10.1090/S0002-9904-1902-00923-3
[2]  
Arnold V.I., 1977, Funct. Anal. Appl., V11, P85, DOI [10.1007/BF01081886, DOI 10.1007/BF01081886]
[3]   Limit cycle bifurcation by perturbing a cuspidal loop of order 2 in a Hamiltonian system [J].
Atabaigi, Ali ;
Zangeneh, Hamid R. Z. ;
Kazemi, Rasool .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1945-1958
[4]  
Binyamini G, 2010, INVENT MATH, V181, P227, DOI 10.1007/s00222-010-0244-0
[5]   THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) :359-366
[6]  
Bogdanov R. I., 1981, SELECTA MATH SOV, V1, P389
[7]   Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces [J].
Christopher, C ;
Lynch, S .
NONLINEARITY, 1999, 12 (04) :1099-1112
[8]   Alien limit cycles in Lienard equations [J].
Coll, B. ;
Dumortier, F. ;
Prohens, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) :1582-1600
[9]   GENERIC 3-PARAMETER FAMILIES OF VECTOR-FIELDS ON THE PLANE, UNFOLDING A SINGULARITY WITH NILPOTENT LINEAR PART - THE CUSP CASE OF CODIMENSION-3 [J].
DUMORTIER, F ;
ROUSSARIE, R ;
SOTOMAYOR, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :375-413
[10]   Perturbations from an elliptic Hamiltonian of degree four - II. Cuspidal loop [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :209-243