Block size in Geometric(p)-biased permutations

被引:1
作者
Cristali, Irina [1 ]
Ranjan, Vinit [1 ]
Steinberg, Jake [1 ]
Beckman, Erin [1 ]
Durrett, Rick [1 ]
Junge, Matthew [1 ]
Nolen, James [1 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
关键词
regenerative permutations; Bernoulli sieve; BERNOULLI SIEVE;
D O I
10.1214/18-ECP182
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fix a probability distribution p = (p(1),p(2),...) on the positive integers. The first block in a p-biased permutation can be visualized in terms of raindrops that land at each positive integer j with probability p(j). It is the first point K so that all sites in [1, K] are wet and all sites in (K, infinity) are dry. For the geometric distribution p, = p(1 - p)(j-1) we show that p log K converges in probability to an explicit constant as p tends to 0. Additionally, we prove that if p has a stretch exponential distribution, then K is infinite with positive probability.
引用
收藏
页数:10
相关论文
共 12 条
[1]   Limit theorems for longest monotone subsequences in random Mallows permutations [J].
Basu, Riddhipratim ;
Bhatnagar, Nayantara .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04) :1934-1951
[2]  
Duchamps J., 2017, T AM MATH SOC
[3]  
Fill JA, 1996, ANN APPL PROBAB, V6, P1260
[4]   A Generalization of the Erdos-Turan Law for the Order of Random Permutation [J].
Gnedin, Alexander ;
Iksanov, Alexander ;
Marynych, Alexander .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (05) :715-733
[5]   q-EXCHANGEABILITY VIA QUASI-INVARIANCE [J].
Gnedin, Alexander ;
Olshanskii, Grigori .
ANNALS OF PROBABILITY, 2010, 38 (06) :2103-2135
[6]  
Gnedin Alexander, 2010, LIMIT THEOREMS NUMBE, V16
[7]   THE BERNOULLI SIEVE REVISITED [J].
Gnedin, Alexander V. ;
Iksanov, Alexander M. ;
Negadajlov, Pavlo ;
Roesler, Uwe .
ANNALS OF APPLIED PROBABILITY, 2009, 19 (04) :1634-1655
[8]   The Bernoulli sieve [J].
Gnedin, AV .
BERNOULLI, 2004, 10 (01) :79-96
[9]  
Janson S., 1997, Electronic Journal of Combinatorics, V4, P1, DOI 10.37236/1302
[10]  
Janson Svante, 1992, POISSON APPROXIMATIO