Combining Kinetic and Constraint-Based Modelling to Better Understand Metabolism Dynamics

被引:11
作者
Moulin, Cecile [1 ,3 ]
Tournier, Laurent [2 ]
Peres, Sabine [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Interdisciplinaire Sci Numer, F-91400 Orsay, France
[2] Univ Paris Saclay, INRAE, MaIAGE, F-78350 Jouy En Josas, France
[3] Univ Paris Saclay, Inst Jean Pierre Bourgin, INRAE, AgroParisTech, F-78000 Versailles, France
关键词
metabolic network; kinetic modelling; constraint-based modelling; elementary flux modes; ELEMENTARY FLUX MODES; CENTRAL CARBON METABOLISM; BALANCE ANALYSIS; RESOURCE-ALLOCATION; DISTRIBUTIONS; OPTIMIZATION; GROWTH; SIMULATION; PREDICTION; TOOL;
D O I
10.3390/pr9101701
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To understand the phenotypic capabilities of organisms, it is useful to characterise cellular metabolism through the analysis of its pathways. Dynamic mathematical modelling of metabolic networks is of high interest as it provides the time evolution of the metabolic components. However, it also has limitations, such as the necessary mechanistic details and kinetic parameters are not always available. On the other hand, large metabolic networks exhibit a complex topological structure which can be studied rather efficiently in their stationary regime by constraint-based methods. These methods produce useful predictions on pathway operations. In this review, we present both modelling techniques and we show how they bring complementary views of metabolism. In particular, we show on a simple example how both approaches can be used in conjunction to shed some light on the dynamics of metabolic networks.</p>
引用
收藏
页数:23
相关论文
共 89 条
[1]   Modes and cuts in metabolic networks: Complexity and algorithms [J].
Acuna, Vicente ;
Chierichetti, Flavio ;
Lacroix, Vincent ;
Marchetti-Spaccamela, Alberto ;
Sagot, Marie-France ;
Stougie, Leen .
BIOSYSTEMS, 2009, 95 (01) :51-60
[2]  
Amar Patrick, 2004, Journal of Biological Physics and Chemistry, V4, P79, DOI 10.4024/2040404.jbpc.04.02
[3]   Metabolic network modelling: Including stochastic effects [J].
Ao, P .
COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (11-12) :2297-2303
[4]   Petri nets for modelling metabolic pathways: a survey [J].
Baldan, Paolo ;
Cocco, Nicoletta ;
Marin, Andrea ;
Simeoni, Marta .
NATURAL COMPUTING, 2010, 9 (04) :955-989
[5]   A quantitative approach to catabolite repression in Escherichia coli [J].
Bettenbrock, K ;
Fischer, S ;
Kremling, A ;
Jahreis, K ;
Sauter, T ;
Gilles, ED .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (05) :2578-2584
[6]   Principal metabolic flux mode analysis [J].
Bhadra, Sahely ;
Blomberg, Peter ;
Castillo, Sandra ;
Rousu, Juho .
BIOINFORMATICS, 2018, 34 (14) :2409-2417
[7]   Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics [J].
Bordbar, Aarash ;
Yurkovich, James T. ;
Paglia, Giuseppe ;
Rolfsson, Ottar ;
Sigurjonsson, Olafur E. ;
Palsson, Bernhard O. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Recon3D enables a three-dimensional view of gene variation in human metabolism [J].
Brunk, Elizabeth ;
Sahoo, Swagatika ;
Zielinski, Daniel C. ;
Altunkaya, Ali ;
Drager, Andreas ;
Mih, Nathan ;
Gatto, Francesco ;
Nilsson, Avlant ;
Gonzalez, German Andres Preciat ;
Aurich, Maike Kathrin ;
Prlic, Andreas ;
Sastry, Anand ;
Danielsdottir, Anna D. ;
Heinken, Almut ;
Noronha, Alberto ;
Rose, Peter W. ;
Burley, Stephen K. ;
Fleming, Ronan M. T. ;
Nielsen, Jens ;
Thiele, Ines ;
Palsson, Bernhard O. .
NATURE BIOTECHNOLOGY, 2018, 36 (03) :272-+
[9]   Automated generation of bacterial resource allocation models [J].
Bulovic, Ana ;
Fischer, Stephan ;
Marc Dinh ;
Golib, Felipe ;
Liebermeister, Wolfram ;
Poirier, Christian ;
Tournier, Laurent ;
Klipp, Edda ;
Fromion, Vincent ;
Goelzer, Anne .
METABOLIC ENGINEERING, 2019, 55 :12-22
[10]   Using Structural Kinetic Modeling To Identify Key Determinants of Stability in Reaction Networks [J].
Carbonaro, Nicole J. ;
Thorpe, Ian F. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (26) :4982-4992