MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems

被引:56
作者
Tariq, Iraq [1 ,2 ]
AlSattar, H. A. [3 ]
Zaidan, A. A. [3 ]
Zaidan, B. B. [3 ]
Abu Bakar, M. R. [2 ]
Mohammed, R. T. [4 ]
Albahri, O. S. [3 ]
Alsalem, M. A. [3 ]
Albahri, A. S. [3 ]
机构
[1] Univ Baghdad, Fac Sci, Dept Math, Baghdad, Iraq
[2] Univ Putra Malaysia, Dept Math, FS, Seri Kembangan, Malaysia
[3] Univ Pendidikan Sultan Idris, Dept Comp, FSKIK, Tanjong Malin, Malaysia
[4] Univ Putra Malaysia, Dept Comp Sci, FSKTM, Seri Kembangan, Malaysia
关键词
Multi-objective optimisation problem; Gravitational search algorithm; Bat algorithm; Swarm intelligence; BAT ALGORITHM; COLONY;
D O I
10.1007/s00521-018-3808-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study proposes a novel strength of multi-objective gravitational search algorithm and bat algorithm MOGSABAT to solve multi-objective optimisation problem. The proposed MOGSABAT algorithm is divided into three stages. In the first stage (moving space), a switch in a solution from single function to multiple functions that contain more than one objective to use the gravitational search algorithm GSA is determined. We established a new equation to calculate the masses of individuals in the population using the theoretical work found in the strength Pareto evolutionary algorithm. In the second stage (moving in space), how to handle the bat algorithm BAT to solve multiple functions is established. We applied the theoretical work of multi-objective particle swarm optimisation into the BAT algorithm to solve multiple functions. In the third stage, multi-objective GSA and multi-objective BAT are integrated to obtain the hybrid MOGSABAT algorithm. MOGSABAT is tested by adopting a three-part evaluation methodology that (1) describes the benchmarking of the optimisation problem (bi-objective and tri-objective) to evaluate the performance of the algorithm; (2) compares the performance of the algorithm with that of other intelligent computation techniques and parameter settings; and (3) evaluates the algorithm based on mean, standard deviation and Wilcoxon signed-rank test statistic of the function values. The optimisation results and discussion confirm that the MOGSABAT algorithm competes well with advanced metaheuristic algorithms and conventional methods.
引用
收藏
页码:3101 / 3115
页数:15
相关论文
共 33 条
  • [1] Hybridization and speciation
    Abbott, R.
    Albach, D.
    Ansell, S.
    Arntzen, J. W.
    Baird, S. J. E.
    Bierne, N.
    Boughman, Janette W.
    Brelsford, A.
    Buerkle, C. A.
    Buggs, R.
    Butlin, R. K.
    Dieckmann, U.
    Eroukhmanoff, F.
    Grill, A.
    Cahan, S. H.
    Hermansen, J. S.
    Hewitt, G.
    Hudson, A. G.
    Jiggins, C.
    Jones, J.
    Keller, B.
    Marczewski, T.
    Mallet, J.
    Martinez-Rodriguez, P.
    Moest, M.
    Mullen, S.
    Nichols, R.
    Nolte, A. W.
    Parisod, C.
    Pfennig, K.
    Rice, A. M.
    Ritchie, M. G.
    Seifert, B.
    Smadja, C. M.
    Stelkens, R.
    Szymura, J. M.
    Vainola, R.
    Wolf, J. B. W.
    Zinner, D.
    [J]. JOURNAL OF EVOLUTIONARY BIOLOGY, 2013, 26 (02) : 229 - 246
  • [2] CAPSO: Centripetal accelerated particle swarm optimization
    Beheshti, Zahra
    Shamsuddin, Siti Mariyam Hj.
    [J]. INFORMATION SCIENCES, 2014, 258 : 54 - 79
  • [3] Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
  • [4] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [5] Deb K., 2001, MULTIOBJECTIVE OPTIM
  • [6] A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    Derrac, Joaquin
    Garcia, Salvador
    Molina, Daniel
    Herrera, Francisco
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) : 3 - 18
  • [7] Ant system: Optimization by a colony of cooperating agents
    Dorigo, M
    Maniezzo, V
    Colorni, A
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (01): : 29 - 41
  • [8] A MULTI-OBJECTIVE GRAVITATIONAL SEARCH ALGORITHM
    Hassanzadeh, Hamid Reza
    Rouhani, Modjtaba
    [J]. 2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, COMMUNICATION SYSTEMS AND NETWORKS (CICSYN), 2010, : 7 - 12
  • [9] Application research of multi-objective Artificial Bee Colony optimization algorithm for parameters calibration of hydrological model
    Huo, Jiuyuan
    Liu, Liqun
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (09) : 4715 - 4732
  • [10] Multi-objective production scheduling with controllable processing times and sequence-dependent setups for deteriorating items
    Karimi-Nasab, M.
    Ghomi, S. M. T. Fatemi
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2012, 50 (24) : 7378 - 7400