Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures

被引:352
作者
Chan, Thalia E. [1 ]
Stumpf, Michael P. H. [1 ,2 ]
Babtie, Ann C. [1 ]
机构
[1] Imperial Coll London, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
[2] Imperial Coll London, MRC London Inst Med Sci, Hammersmith Campus, London W12 0NN, England
基金
英国生物技术与生命科学研究理事会;
关键词
MUTUAL INFORMATION; BAYESIAN-APPROACH; FATE DECISIONS; BLOOD STEM; EXPRESSION; DYNAMICS; HETEROGENEITY; PERFORMANCE; ESTIMATOR; ENTROPY;
D O I
10.1016/j.cels.2017.08.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While single-cell gene expression experiments present new challenges for data processing, the cell-to-cell variability observed also reveals statistical relationships that can be used by information theory. Here, we use multivariate information theory to explore the statistical dependencies between triplets of genes in single-cell gene expression datasets. We develop PIDC, a fast, efficient algorithm that uses partial information decomposition (PID) to identify regulatory relationships between genes. We thoroughly evaluate the performance of our algorithm and demonstrate that the higher-order information captured by PIDC allows it to outperform pairwise mutual information-based algorithms when recovering true relationships present in simulated data. We also infer gene regulatory networks from three experimental single-cell datasets and illustrate how network context, choices made during analysis, and sources of variability affect network inference. PIDC tutorials and open-source software for estimating PID are available. PIDC should facilitate the identification of putative functional relationships and mechanistic hypotheses from single-cell transcriptomic data.
引用
收藏
页码:251 / +
页数:20
相关论文
共 99 条
[41]   Gene Regulatory Network Reconstruction Using Conditional Mutual Information [J].
Liang, Kuo-Ching ;
Wang, Xiaodong .
EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2008, (01)
[42]  
Liu Serena, 2016, F1000Res, V5, DOI 10.12688/f1000research.7223.1
[43]   Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets [J].
Macosko, Evan Z. ;
Basu, Anindita ;
Satija, Rahul ;
Nemesh, James ;
Shekhar, Karthik ;
Goldman, Melissa ;
Tirosh, Itay ;
Bialas, Allison R. ;
Kamitaki, Nolan ;
Martersteck, Emily M. ;
Trombetta, John J. ;
Weitz, David A. ;
Sanes, Joshua R. ;
Shalek, Alex K. ;
Regev, Aviv ;
McCarroll, Steven A. .
CELL, 2015, 161 (05) :1202-1214
[44]   DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator [J].
Madar, Aviv ;
Greenfield, Alex ;
Vanden-Eijnden, Eric ;
Bonneau, Richard .
PLOS ONE, 2010, 5 (03)
[45]  
Marbach D, 2012, NAT METHODS, V9, P796, DOI [10.1038/NMETH.2016, 10.1038/nmeth.2016]
[46]   Revealing strengths and weaknesses of methods for gene network inference [J].
Marbach, Daniel ;
Prill, Robert J. ;
Schaffter, Thomas ;
Mattiussi, Claudio ;
Floreano, Dario ;
Stolovitzky, Gustavo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (14) :6286-6291
[47]   ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context [J].
Margolin, AA ;
Nemenman, I ;
Basso, K ;
Wiggins, C ;
Stolovitzky, G ;
Dalla Favera, R ;
Califano, A .
BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
[48]   Reverse engineering cellular networks [J].
Margolin, Adam A. ;
Wang, Kai ;
Lim, Wei Keat ;
Kustagi, Manjunath ;
Nemenman, Ilya ;
Califano, Andrea .
NATURE PROTOCOLS, 2006, 1 (02) :663-672
[49]   Information processing by simple molecular motifs and susceptibility to noise [J].
Mc Mahon, Siobhan S. ;
Lenive, Oleg ;
Filippi, Sarah ;
Stumpf, Michael P. H. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (110)
[50]   Information theory and signal transduction systems: From molecular information processing to network inference [J].
Mc Mahon, Siobhan S. ;
Sim, Aaron ;
Filippi, Sarah ;
Johnson, Robert ;
Liepe, Juliane ;
Smith, Dominic ;
Stumpf, Michael P. H. .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2014, 35 :98-108