Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures

被引:328
作者
Chan, Thalia E. [1 ]
Stumpf, Michael P. H. [1 ,2 ]
Babtie, Ann C. [1 ]
机构
[1] Imperial Coll London, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
[2] Imperial Coll London, MRC London Inst Med Sci, Hammersmith Campus, London W12 0NN, England
基金
英国生物技术与生命科学研究理事会;
关键词
MUTUAL INFORMATION; BAYESIAN-APPROACH; FATE DECISIONS; BLOOD STEM; EXPRESSION; DYNAMICS; HETEROGENEITY; PERFORMANCE; ESTIMATOR; ENTROPY;
D O I
10.1016/j.cels.2017.08.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While single-cell gene expression experiments present new challenges for data processing, the cell-to-cell variability observed also reveals statistical relationships that can be used by information theory. Here, we use multivariate information theory to explore the statistical dependencies between triplets of genes in single-cell gene expression datasets. We develop PIDC, a fast, efficient algorithm that uses partial information decomposition (PID) to identify regulatory relationships between genes. We thoroughly evaluate the performance of our algorithm and demonstrate that the higher-order information captured by PIDC allows it to outperform pairwise mutual information-based algorithms when recovering true relationships present in simulated data. We also infer gene regulatory networks from three experimental single-cell datasets and illustrate how network context, choices made during analysis, and sources of variability affect network inference. PIDC tutorials and open-source software for estimating PID are available. PIDC should facilitate the identification of putative functional relationships and mechanistic hypotheses from single-cell transcriptomic data.
引用
收藏
页码:251 / +
页数:20
相关论文
共 99 条
  • [1] Agresti A., 2005, Stat. Methods Appl., V14, P297, DOI DOI 10.1007/S10260-005-0121-Y
  • [2] [Anonymous], 1977, Data Analysis and Regression
  • [3] Design and computational analysis of single-cell RNA-sequencing experiments
    Bacher, Rhonda
    Kendziorski, Christina
    [J]. GENOME BIOLOGY, 2016, 17
  • [4] A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    Beal, MJ
    Falciani, F
    Ghahramani, Z
    Rangel, C
    Wild, DL
    [J]. BIOINFORMATICS, 2005, 21 (03) : 349 - 356
  • [5] Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad David
    Tadmor, Michelle D.
    Simonds, Erin F.
    Chen, Tiffany J.
    Shenfeld, Daniel K.
    Nolan, Garry P.
    Pe'er, Dana
    [J]. CELL, 2014, 157 (03) : 714 - 725
  • [6] Bezanson Jeff, 2014, ARXIV14111607
  • [7] Bin X., 2017, em 2017 20th International Conference on Electrical Machines and Systems (ICEMS), P1
  • [8] The Inferelator:: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    Bonneau, Richard
    Reiss, David J.
    Shannon, Paul
    Facciotti, Marc
    Hood, Leroy
    Baliga, Nitin S.
    Thorsson, Vesteinn
    [J]. GENOME BIOLOGY, 2006, 7 (05)
  • [9] An Expanded View of Complex Traits: From Polygenic to Omnigenic
    Boyle, Evan A.
    Li, Yang I.
    Pritchard, Jonathan K.
    [J]. CELL, 2017, 169 (07) : 1177 - 1186
  • [10] Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]