Atom Manipulation Using Atomic Force Microscopy at Room Temperature

被引:1
作者
Sugimoto, Y. [1 ]
Abe, M. [2 ]
Morita, S. [3 ]
机构
[1] Osaka Univ, Grad Sch Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Engn, Toyonaka, Osaka 5608531, Japan
[3] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan
来源
IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY | 2015年
关键词
Atom manipulation; Non-contact atomic force microscopy; Force spectroscopy; SCANNING TUNNELING MICROSCOPE; SINGLE ATOMS; CHEMICAL-IDENTIFICATION; LATERAL MANIPULATION; RESOLUTION; SURFACE; SPECTROSCOPY; CANTILEVERS; CHAINS; TIP;
D O I
10.1007/978-3-319-17401-3_3
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Atomic force microscopy (AFM) has demonstrated its capabilities as a nanotechnology tool. These capabilities include imaging/characterizing individual atoms on various surfaces and manipulating atoms and molecules. Here, we report how atom manipulation works on a well-known semiconducting surface, Si(111)-(7 x 7). To quantify the stochastic behavior of atom manipulation at room temperature (RT), atom hopping probabilities with various tip-surface distances are derived. The different hopping processes of Si adatoms have different tendencies in the probability plots. More remarkably, the ability of atom manipulation strongly depends on the AFM tip used. Tips can be characterized by their interaction force with surface Si adatoms. Force spectroscopic measurements combined with atom manipulation clarified that the ability to manipulate atoms is correlated with maximum attractive chemical bonding force with surface Si adatoms. Knowing the degree of chemical reactivity on the tip apex used for manipulation is key to enhancing the efficiency of the manipulation process occurring on semiconductor surfaces.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 54 条
[1]   Room-temperature reproducible spatial force spectroscopy using atom-tracking technique [J].
Abe, M ;
Sugimoto, Y ;
Custance, O ;
Morita, S .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[2]   Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy [J].
Abe, Masayuki ;
Sugimoto, Yoshiaki ;
Namikawa, Takashi ;
Morita, Kenichi ;
Oyabu, Noriaki ;
Morita, Seizo .
APPLIED PHYSICS LETTERS, 2007, 90 (20)
[3]  
Albers BJ, 2009, NAT NANOTECHNOL, V4, P307, DOI [10.1038/NNANO.2009.57, 10.1038/nnano.2009.57]
[4]   FREQUENCY-MODULATION DETECTION USING HIGH-Q CANTILEVERS FOR ENHANCED FORCE MICROSCOPE SENSITIVITY [J].
ALBRECHT, TR ;
GRUTTER, P ;
HORNE, D ;
RUGAR, D .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (02) :668-673
[5]   Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: Characterization of interatomic van der Waals forces [J].
Ashino, M ;
Schwarz, A ;
Behnke, T ;
Wiesendanger, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :136101-1
[6]   Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes [J].
Ashino, Makoto ;
Obergfell, Dirk ;
Haluska, Miro ;
Yang, Shihe ;
Khlobystov, Andrei N. ;
Roth, Siegmar ;
Wiesendanger, Roland .
NATURE NANOTECHNOLOGY, 2008, 3 (06) :337-341
[7]   Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip [J].
Bartels, L ;
Meyer, G ;
Rieder, KH .
PHYSICAL REVIEW LETTERS, 1997, 79 (04) :697-700
[8]   Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy [J].
Braun, D-A ;
Weiner, D. ;
Such, B. ;
Fuchs, H. ;
Schirmeisen, A. .
NANOTECHNOLOGY, 2009, 20 (26)
[9]   AN ATOMIC SWITCH REALIZED WITH THE SCANNING TUNNELING MICROSCOPE [J].
EIGLER, DM ;
LUTZ, CP ;
RUDGE, WE .
NATURE, 1991, 352 (6336) :600-603
[10]   Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor [J].
Giessibl, FJ ;
Hembacher, S ;
Herz, M ;
Schiller, C ;
Mannhart, J .
NANOTECHNOLOGY, 2004, 15 (02) :S79-S86