The Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite

被引:119
作者
Reed, James P. [1 ,2 ]
Uchoa, Bruno [1 ,2 ]
Joe, Young Il [1 ,2 ]
Gan, Yu [1 ,2 ]
Casa, Diego [3 ]
Fradkin, Eduardo [1 ,2 ]
Abbamonte, Peter [1 ,2 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
DYNAMICS;
D O I
10.1126/science.1190920
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, alpha*(g) (k, omega), the value of which approaches 0.14 +/- 0.092 similar to 1/7 at low energy and large distances. This value is substantially smaller than the nominal alpha(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.
引用
收藏
页码:805 / 808
页数:4
相关论文
共 28 条
[1]   Ultrafast Imaging and the Phase Problem for Inelastic X-Ray Scattering [J].
Abbamonte, Peter ;
Wong, Gerard C. L. ;
Cahill, David G. ;
Reed, James P. ;
Coridon, Robert H. ;
Schmidt, Nathan W. ;
Lai, Ghee Hwee ;
Il Joe, Young ;
Casa, Diego .
ADVANCED MATERIALS, 2010, 22 (10) :1141-1147
[2]   The GW method [J].
Aryasetiawan, F ;
Gunnarsson, O .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (03) :237-312
[3]   Chirality and correlations in graphene [J].
Barlas, Yafis ;
Pereg-Barnea, T. ;
Polini, Marco ;
Asgari, Reza ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[4]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[5]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Divergent resistance at the Dirac point in graphene: Evidence for a transition in a high magnetic field [J].
Checkelsky, Joseph G. ;
Li, Lu ;
Ong, N. P. .
PHYSICAL REVIEW B, 2009, 79 (11)
[8]   Is Graphene in Vacuum an Insulator? [J].
Drut, Joaquin E. ;
Lahde, Timo A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[9]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[10]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195