Poisson structures on moduli spaces of representations

被引:43
作者
Crawley-Boevey, William [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
Poisson bracket; Poisson structure; Necklace Lie algebra; Preprojective algebra; NONCOMMUTATIVE SYMPLECTIC-GEOMETRY; ALGEBRAS;
D O I
10.1016/j.jalgebra.2010.09.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Poisson structure can be induced on the affine moduli space of (semisimple) representations of an associative algebra from a suitable Lie algebra structure on the zeroth Hochschild homology of the algebra. In particular this applies to necklace Lie algebra for path algebras of doubled quivers and preprojective algebras. We call such structures H-0-Poisson structures, and show that they are well behaved for Azumaya algebras and under Morita equivalence. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 15 条
[1]   EXTENSIONS OF DERIVATIONS [J].
BARR, M ;
KNUS, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 28 (01) :313-&
[2]  
BLOCK J, 1991, P 20 INT C DIFF GEOM, V2, P471
[3]   Necklace Lie algebras and noncommutative symplectic geometry [J].
Bocklandt, R ;
Le Bruyn, L .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (01) :141-167
[4]  
CORTINAS G, 1994, S, V121, P53
[5]   Noncommutative deformations of Kleinian singularities [J].
Crawley-Boevey, W ;
Holland, MP .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) :605-635
[6]   Noncommutative geometry and quiver algebras [J].
Crawley-Boevey, William ;
Etingof, Pavel ;
Ginzburg, Victor .
ADVANCES IN MATHEMATICS, 2007, 209 (01) :274-336
[7]  
CRAWLEYBOEVEY W, MATHQA0506268
[8]  
De Meyer F., 1971, LECT NOTES MATH, V181
[9]   Ring theory from symplectic geometry [J].
Farkas, DR ;
Letzter, G .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 125 (1-3) :155-190
[10]  
Ginzburg V, 2001, MATH RES LETT, V8, P377