Imperfect transcritical and pitchfork bifurcations

被引:64
作者
Liu, Ping
Shi, Junping [1 ]
Wang, Yuwen
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Harbin Normal Univ, YY Tseng Funct Anal Res Ctr, Harbin 150025, Heilongjiang, Peoples R China
[3] Harbin Normal Univ, Sch Math & Comp Sci, Harbin 150025, Heilongjiang, Peoples R China
[4] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
imperfect bifurcation; secondary bifurcation; bifurcation in Banach spaces;
D O I
10.1016/j.jfa.2007.06.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Imperfect bifurcation phenomena are formulated in framework of analytical bifurcation theory on Banach spaces. In particular the perturbations of transcritical and pitchfork bifurcations at a simple eigenvalue are examined, and two-parameter unfoldings of singularities are rigorously established. Applications include sentilinear elliptic equations, imperfect Euler buckling beam problem and perturbed diffusive logistic equation. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:573 / 600
页数:28
相关论文
共 29 条
[1]  
[Anonymous], 2003, ADV EVOLUTION EQUATI
[2]  
[Anonymous], 1937, MOSCOW U B MATH
[3]  
Antman S S, 2005, APPL MATH SCI, V107
[4]  
Chang K. C., 1993, PROGR NONLINEAR DIFF, V6
[5]  
Chow S-N., 2012, METHODS BIFURCATION
[6]  
CHURCH P. T., 1997, PROGR NONLINEAR DIFF, V27, P161
[7]  
Church P. T., 1997, PROGR NONLINEAR DIFF, V27, P109
[8]  
Crandal M.G., 1971, J. Funct. Anal, V8, P321, DOI 10.1016/0022-1236(71)90015-2
[9]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[10]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7