Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain

被引:65
作者
Kawahara, Y
Ito, K
Sun, H
Kanazawa, I
Kwak, S
机构
[1] Univ Tokyo, Grad Sch Med, Dept Neurol, Bunkyo Ku, Tokyo 1138655, Japan
[2] Natl Ctr Neurol & Psychiat, Natl Inst Neurosci, Kodaira, Tokyo 187, Japan
关键词
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor; amyotrophic lateral sclerosis; Q/R site; quantitative reverse transcription-polymerase chain reaction; RNA editing;
D O I
10.1046/j.1460-9568.2003.02718.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The ionotropic glutamate receptor (GluR) subunits GluR2, GluR5 and GluR6 are subject to RNA editing at their Q/R sites, resulting in significant alterations in the channel properties of the receptors. RNA editing at the Q/R site of GluRs is both developmentally and regionally regulated. Here we provide the first quantitative measurements of both mRNAs of the GluR subunits and mRNAs of the RNA editing enzymes ADAR1-ADAR3 in a comparison of the efficiency of editing at the Q/R site with the expression levels of ADAR mRNA in human brain. We demonstrate that the Q/R site of GluRs in white matter is edited significantly less than in grey matter. In addition, by means of quantitative reverse transcription-polymerase chain reaction methods, we demonstrate that the relative abundance of ADAR2 mRNA to GluR2 mRNA is significantly lower in white matter than in grey matter and that the GluR2 Q/R site editing decreased only when the ratio of ADAR2 mRNA (not that of ADAR1 mRNA) to GluR2 mRNA dropped below a threshold (20 x 10(-3)). These results suggest that Q/R site of GluRs editing is regulated in a regional, and hence presumably cell-specific, manner and that the GluR2 Q/R site editing is critically regulated by ADAR2 in human brain.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 83 条
[1]  
Agrawal SK, 1997, J NEUROSCI, V17, P1055
[2]   EDITING FOR AN AMPA RECEPTOR SUBUNIT RNA IN PREFRONTAL CORTEX AND STRIATUM IN ALZHEIMERS-DISEASE, HUNTINGTONS-DISEASE AND SCHIZOPHRENIA [J].
AKBARIAN, S ;
SMITH, MA ;
JONES, EG .
BRAIN RESEARCH, 1995, 699 (02) :297-304
[3]   A phylogenetic analysis reveals an unusual sequence conservation within introns involved in RNA editing [J].
Aruscavage, PJ ;
Bass, BL .
RNA, 2000, 6 (02) :257-269
[4]   Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro:: evidence for independent developmental, pathological and cellular regulation [J].
Bernard, A ;
Ferhat, L ;
Dessi, F ;
Charton, G ;
Represa, A ;
Ben-Ari, Y ;
Khrestchatisky, M .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (02) :604-616
[5]   ASSESSING THE EXTENT OF RNA EDITING IN THE TMII REGIONS OF GLUR5 AND GLUR6 KAINATE RECEPTORS DURING RAT-BRAIN DEVELOPMENT [J].
BERNARD, A ;
KHRESTCHATISKY, M .
JOURNAL OF NEUROCHEMISTRY, 1994, 62 (05) :2057-2060
[6]   EARLY-ONSET EPILEPSY AND POSTNATAL LETHALITY ASSOCIATED WITH AN EDITING-DEFICIENT GLUR-B ALLELE IN MICE [J].
BRUSA, R ;
ZIMMERMANN, F ;
KOH, DS ;
FELDMEYER, D ;
GASS, P ;
SEEBURG, PH ;
SPRENGEL, R .
SCIENCE, 1995, 270 (5242) :1677-1680
[7]   DIVALENT ION PERMEABILITY OF AMPA RECEPTOR CHANNELS IS DOMINATED BY THE EDITED FORM OF A SINGLE SUBUNIT [J].
BURNASHEV, N ;
MONYER, H ;
SEEBURG, PH ;
SAKMANN, B .
NEURON, 1992, 8 (01) :189-198
[8]   CALCIUM-PERMEABLE AMPA-KAINATE RECEPTORS IN FUSIFORM CEREBELLAR GLIAL-CELLS [J].
BURNASHEV, N ;
KHODOROVA, A ;
JONAS, P ;
HELM, PJ ;
WISDEN, W ;
MONYER, H ;
SEEBURG, PH ;
SAKMANN, B .
SCIENCE, 1992, 256 (5063) :1566-1570
[9]   FRACTIONAL CALCIUM CURRENTS THROUGH RECOMBINANT GLUR CHANNELS OF THE NMDA, AMPA AND KAINATE RECEPTOR SUBTYPES [J].
BURNASHEV, N ;
ZHOU, Z ;
NEHER, E ;
SAKMANN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 485 (02) :403-418
[10]   Regulation of serotonin-2C receptor G-protein coupling by RNA editing [J].
Burns, CM ;
Chu, H ;
Rueter, SM ;
Hutchinson, LK ;
Canton, H ;
SandersBush, E ;
Emeson, RB .
NATURE, 1997, 387 (6630) :303-308